Журнал общей химии. 2014. Т. 84. Вып. 4

УДК 541.49:547.1-304.2:546.224

СИНТЕЗ И НЕКОТОРЫЕ ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СУЛЬФАТОВ БЕНЗИЛАММОНИЯ

© Р. Е. Хома,^{1,2•} А. А. Эннан,¹ В. О. Гельмбольдт,³ О. В. Шишкин,^{4,5} В. Н. Баумер,^{4,5} А. В. Мазепа,⁶ Ю. Э. Брусиловский⁶

¹Физико-химический институт защиты окружающей среды и человека Украина, 65082, Одесса, ул. Преображенская, 3; e-mail: rek@onu.edu.ua, r_khoma@farlep.net ²Одесский национальный университет имени И. И. Мечникова ³Одесский национальный медицинский университет ⁴Институт монокристаллов Национальной академии наук Украины, Харьков ⁵Харьковский национальный университет имени В. Н. Каразина ⁶Физико-химический институт имени А. В. Богатского Национальной академии наук Украины, Одесса

Предложен новый метод синтеза сульфатов разнозамещенных бензиламмонийных катионов путем взаимодействия в системах SO₂-L-H₂O, где L – бензиламин, а-фенилэтиламин, N,N-диметилбензиламин, дибензиламин. Полученные соединения охарактеризованы методами PCA, ИК, КР спектроскопии и масс-спектрометрии.

Ключевые слова: бензиламин, бензиламмонийсульфат, РСА, ИК и КР спектроскопия.

Бензиламин и его производные образуют соли с минеральными [1-7] и органическими кислотами [8-10]. Среди этих солей структурно охарактеризованы нитрат [1], сульфат [2], дигидрофосфат [3] и моногидрат гидроарсената [4] бензиламмония; сульфат, гидрофосфат (S)-а-фенилэтиламмония [5]; трифторацетат (*R*)-α-фенилэтиламмония [8]; насыщенные [9] и α,β-ненасыщенные [10] карбоксилаты (±)-α-фенилэтиламмония и его фенилпроизводных. Интерес к указанной группе соединений связан с возможностями их прикладного применения. Растворимые в воде соли бензиламмония привлекают внимание как лекарственные средства с повышенной биодоступностью [11]; например, дибензиламин входит в состав соли с пенициллином, которая является водорастворимым антибиотиком [12]. Сульфат и гидрофосфат (S)-1-фенилэтиламмония изучались в качестве компонентов новых нелинейно-оптических материалов, обладающих диэлектрическими свойствами [5]. Соли N-алкилдиметилбензиламмония с неорганическими анионами используются в качестве антисептиков и дезинфицирующих средств [13].

В данной работе описаны методы синтеза, а также обсуждены строение, спектральные характеристики и термическая устойчивость сульфатов (I– IV), полученных, соответственно, из бензиламина, α-фенилэтиламина, N,N-диметилбензиламина и дибензиламина.

В условиях регистрации масс-спектров соединений (I, III, IV) наблюдается так называемый «бензильный разрыв» [14], при этом в спектрах наблюдается пик иона $[C_7H_7]^+$, в спектре соединения (IV) этот пик самый интенсивный.

Структура соединения (II), установленная по данным РСА, аналогична описанной в работе [2] структуре сульфата бензиламмония.

Анион SO₄^{2–} находится в частном положении на оси второго порядка, в независимой части ячейки находятся один катион $C_8H_{12}N^+$ и половина сульфат-иона (рис. 1). Длины связей и валентные углы, образуемые неводородными атомами, приведены в табл. 1, 2. При упаковке базисных единиц в кристаллической структуре образуется система водородных связей, характеристики которых показаны в табл. 3. Водородные связи образуются между аммонийной группой катиона и кислородными атомами сульфат-иона и располагаются вблизи плоскости z = 1/2, образуя слой, находящийся в пределах 0 < z < 1. Между двумя такими соседними слоями

Поступило в Редакцию 17 июня 2013 г.

Р. Е. Хома и др.

Таблица 3

Характеристики водородных связей D-H···A в молекуле сульфата (II)

Связь D–Н…А	Расстояние, Å			Угол	Координаты	
	d(D–H)	<i>d</i> (H···A)	<i>d</i> (D····A)	рна, град	атома А	
N^1 – H^{1A} … O^2	0.89	1.92	2.805(8)	169.9	-x + 3/2, y + 1/2,	
					-z + 1	
N^1 – H^{1C} ···O ²	0.89	1.90	2.786(6)	171.6		
N^1 – H^{1B} ···O ¹	0.89	1.85	2.733(8)	169.4	x - 1/2, y - 1/2, z	

Таблица 1

Рис. 1. Общий вид молекулы соединения (II) (уровень вероятности 50%). Симметрически эквивалентные атомы обозначе-

Длины связей в молекуле сульфата (II)

Связь	Связь <i>d</i> , Å		Связь <i>d</i> , Å		d, Å	
S^1-O^2	1.458(5)	C^1-C^2	1.425(11)	C ⁴ -C ⁵	1.366(17)	
$S^1 - O^1$	1.473(5)	C^1-C^7	1.505(10)	C ⁵ -C ⁶	1.370(11)	
$N^1 - C^7$	1.525(8)	$C^2 - C^3$	1.305(13)	C ⁷ –C ⁸	1.523(12)	
$C^{1} - C^{6}$	1.410(11)	C^3-C^4	1.429(15)			

Таблица 2

Валентные углы в молекуле сульфата (II)^а

Угол	ω, град	Угол	ω, град	
$O^2S^1O^{2\#1}$	107.5(4)	$C^2C^3C^4$	117.4(10)	
$O^2S^1O^1$	109.0(3)	$C^5C^4C^3$	118.5(10)	
$O^2 S^1 O^{1\#1}$	110.0(3)	$C^4C^5C^6$	124.5(11)	
$O^1S^1O^{1\#1}$	111.1(5)	$C^5C^6C^1$	116.7(9)	
$C^6C^1C^2$	117.5(8)	$C^1C^7C^8$	114.3(7)	
$C^6C^1C^7$	120.6(7)	$C^1C^7N^1$	109.8(6)	
$C^2C^1C^7$	121.9(8)	$C^8C^7N^1$	108.2(6)	
$C^3C^2C^1$	124 8(10)			

Рис. 2. Проекция *x*0*z* молекулы соединения (II). Водородные связи изображены *штриховыми* линиями.

водородных связей нет, как видно из рис. 2. Эта особенность структуры приводит к тому, что кристаллы соединения (II) являются слоистыми, имеют низкое качество и склонны к двойникованию.

Некоторые характеристики ИК спектров исходных аминов и соединений (I–IV) приведены в табл. 4.

Отнесение частот колебаний аниона SO₄^{2–} в ИК спектре соединения (I) проводили сравнительным анализом ИК спектров исходного бензиламина и соответствующих спектров КР с учетом данных работы [15].

Корректная идентификация полос асимметрич-

558

ны буквой А.

Примечание. а) Симметричное преобразование для получения эквивалентных атомов: #1 - x + 2, y, -z + 1

ных валентных колебаний v_{as} аниона SO₄²⁻ в ИК спектре сульфата (I) затруднена присутствием в характеристической для этих колебаний области

Синтез и некоторые физико-химические свойства сульфатов бензиламмония

Таблица 4

Соединение	ν(NH), ν(CH)	$\nu(N^{+}H)$	$\begin{array}{l} \delta(HN^{^{+}}H),\\ \delta(CN^{^{+}}H) \end{array}$	$\nu_{as}(SO_4^{2-})$	$v_{s}(SO_{4}^{2-})$	$\delta_{as}(SO_4^{2-})$	$\delta_s(SO_4^{2-})$
Свободный ион SO ₄ ²⁻				1105	983	611	450
(симметрия T _d) [15]				v ₃ (<i>F</i> ₂ , ИК, КР)	$v_1(A_1, KP)$	v ₄ (<i>F</i> ₂ , ИК, КР)	v ₂ (E, KP)
Бензиламин	3379 с, 3290 с,						
	3062 c, 3027 c,						
	2920 с, 2753 ср						
Ι	3465 ср. ш, 3178 ср,	2676 cp, 2560 cp,	1635 cp	1160 пл, 1118 о. с,	961 cp	619 c, 573 cp	471 сл,
	2997 с, 2887 с	2341 ср, 2015 ср		1031 cp			451 сл
α-Фенилэтиламин	3367 ср, 3286 ср,						
	3084 c, 3027 c,						
	2962 с, 2967 с						
II	3440 ср, 3000 с. ш,	2752 пл, 2668 ср,	1635 пл,	1134 пл, 1122 о. с,	971 cp	635 пл, 620 ср,	465 сл,
	2913 с. ш	2535 ср, 2151 ср	1614 c	1090 c, 1061 c		588 cp	430 сл
N,N-	3027 c, 2893 c,						
Диметилбензиламин	2846 с, 2804 с						
III	3406 с. ш,	2704ср. ш, 2405	1649 cp	1140 пл, 1090 о. с,	961 cp	709 ср, 605 сл	494 сл,
	3038 ср. ш	ср. ш, 2265 ср		1058 o. c, 1047 o. c			415 cp
Дибензиламин	3313 ср, 3105 ср,						
	3027 c, 2918 c, 2816 c						
IV	3460 ср, 3061 пл,	2641 ср, 2474 ср,	1623 cp,	1134 с. ш	920 ср	668 ср, 658 пл,	513 пл,
	3290 пл, 3000 о. с,	2364 ср, 2341 ср	1615 cp			645 cp	415 сл
	2833 cp						

Волновые числа (см⁻¹) максимумов полос поглощения в ИК спектрах исходных аминов и сульфатов (I–IV)

(~1100 см⁻¹) полос колебаний катиона бензиламмония. Вместе с тем в спектре КР колебания бензиламмония в указанной области сравнительно малоактивны, что позволяет выделить три расщепленные компоненты трижды вырожденных асимметричных колебаний $v_3(F_2)$ в виде линий средней (1165 см⁻¹) и высокой (1093, 1033 см⁻¹) интенсивностей. Таким образом, усложнение ИК спектра сульфата (I) по сравнению с ИК спектром исходного амина (появление сложной интенсивной полосы с максимумом ~1118 см⁻¹ и плечом при 1160 см⁻¹ вместо синглетной полосы при 1145 см⁻¹ и плеча при 1085 см⁻¹; усиление полосы при 1030 см⁻¹) является результатом перекрывания полос колебаний катиона и $v_{as}(SO_4^{2-})$.

В спектре КР соединения (I) обнаружена интенсивная линия при 966 см $^{-1}$, отсутствующая в спектре бензиламина, которая может быть отнесена к полносимметричным колебаниям $v_s(SO_4^{2-})$. Как из-

с частотой, практически равной частоте линии КР. Это позволяет интерпретировать новую полосу слабой интенсивности при 961 см⁻¹ в ИК спектре сульфата (I) как $v_s(SO_4^{2-})$ (A₁).

Две компоненты трижды вырожденных деформационных колебаний $\delta_{as}(SO_4^{2-})(v_4)$ в ИК спектре соединения (I) регистрируются в виде полос сильной (619 см⁻¹) и средней (573 см⁻¹) интенсивностей. В спектре КР им соответствуют также две линии средней интенсивности при 623 и 590 см⁻¹, что указывает на снятие вырождения $v_4(F_1 \rightarrow A_2 + E_U)$.

В области частот дважды вырожденного деформационного колебания v₂ (450 см⁻¹) свободного иона SO_4^{2-} в ИК спектре сульфата (I) следует отметить появление двух четко выраженных плеч при 471 и 451 см⁻¹ полосы внеплоскостных колебаний δ (ССН) при 485 см⁻¹. В спектре КР колебания δ_s (SO₄²⁻) отнесены к линии слабой интенсивности при 446 см⁻¹.

Полосы валентных и деформационных колеба-

559

вестно [15], понижение симметрии сульфат-аниона ведет к проявлению в ИК спектре слабой полосы полносимметричного валентного колебания v₁(A₁) ний аниона SO₄²⁻ в ИК спектрах сульфатов (II–IV) отнесены путем сравнительного анализа спектров солей, исходных бензиламинов, а также спектра

Р. Е. Хома и др.

соединения (I). Как следует из табл. 3, внутренние колебания иона SO_4^{2-} представлены в ИК спектрах полным возможным набором частот при снятии вырождения колебаний F_2 и Е и активности колебаний типа A_1 , что может указывать на более низкую симметрию аниона в кристаллах солей по сравнению с T_d -симметрией свободного аниона.

В ИК спектрах солей в области 3500–2000 см⁻¹ зафиксированы сложные полосы валентных колебаний связей N–H групп NH₃⁺, NH₂⁺, NH⁺ [15, 16]. Следует особо отметить, что полосы при 2015 (I), 2151 (II), 2265 (III) и 2341 см⁻¹ (IV) появляются благодаря сильным водородным связям NH···O в кристаллах солей; наличие и положение этой полосы в ИК спектре может служить характеристикой участия бензиламмонийных катионов в H-связывании [17].

Характеристичные ножничные деформационные колебания аммонийных групп $\delta(HN^+H)$ и $\delta(NN^+H)$ регистрируются в сравнительно узкой области (1650–1610 см⁻¹).

На термограмме сульфата (I) наблюдаются два эндоэффекта при 210–320°С (T_{max} 280°С, Δm 69.86%) и 390-550°С (*T*_{max} 460°С, *Δm* 7.94%), а также экзоэффект при 550–660°С ($T_{\rm max}$ 600°С, Δm 7.94%). На термограмме соединения (II) проявляются эндоэффект при 240–370°С (T_{max} 300°С, Δm 64.29%) и экзоэффект при 390-660°С (T_{max} 600°С, ∆т 17.03%). На воздухе соединения (I, II) стабильны и начинают разлагаться лишь при нагревании до 210 и 240°С соответственно; (S)-энантиомер (II) начинает разлагаться при 230°С [3]. Необходимо отметить, что низкотемпературные эффекты на термограммах соединений (I, II) соответствуют отщеплению одинаковых фрагментов (М ~ 218 г/моль), очевидно, связанному со спецификой термолиза сульфатов бензиламмония.

На термограмме соединения (III) наблюдаются три эндоэффекта при 90–140°С (T_{max} 100°С, Δm 16.22%), 140–250°С (T_{max} 170°С, Δm 18.24%) и 300– 385°С (T_{max} 350°С, Δm 46.62%), а также экзоэффект при 400–590°С (T_{max} = 550°С, Δm = 4.05%). На термограмме соединения (IV) проявляются эндоэффект при 90–150°С (T_{max} 130°С, Δm 11.92%) и два экзоэффекта при 230–360°С (T_{max} 290°С, Δm 70.86%) и 530–610°С (T_{max} 580°С, Δm 2.65%).

Таким образом, данная работа демонстрирует новые примеры впервые отмеченного в работе [18]

присутствии кислорода воздуха в соответствии со следующей формальной схемой.

$$2SO_2 + 4R_nNH_{3-n} + 2H_2O + O_2 \rightarrow 2(R_nNH_{4-n})_2SO_4$$

Возможность мягкого окисления SO₂ в приведенных условиях с использованием более широкого круга аминных лигандов будет исследована в дальнейшем.

Экспериментальная часть

В работе использовали технический оксид серы (IV) после предварительной очистки и осушки [21]. Все амины имели квалификацию Ч и использовались без дополнительной очистки.

Анализ содержания углерода, водорода и азота проводили с использованием элементного CHNанализатора, содержание серы определяли по Шенигеру [19].

Спектры КР были измерены на лазерном спектрометре ДФС-24 с возбуждением 532 и 632.8 нм (неодимовый и гелий-неоновый лазеры соответственно).

ИК спектры регистрировали с помощью спектрофотометра Spectrum BX II FT-IR System (Perkin-Elmer) (КВг), масс-спектры – на приборе МХ-1321 (прямой ввод образца в источник, энергия ионизирующих электронов 70 эВ).

Термическую устойчивость соединений изучали методом дифференциального термического анализа с использованием дериватографа Q-1500 D Paulik-Paulik-Erdey (в платиновых тиглях, на воздухе, 20–1000°С при скорости нагрева 10 град/мин, чувствительность 1/5 максимальной, эталон Al₂O₃).

Рентгеноструктурные исследования выполнены на дифрактометре Oxford Diffraction, (Мо K_{α} -излучение, графитовый монохроматор, ССД-детектор Sapphire-3). Для расшифровки и уточнения структуры использован комплекс программ SHELX-97 [20]. Позиции атомов водорода найдены из разностного синтеза электронной плотности и уточнены по модели наездника. Основные кристаллографические данные и результаты уточнения по структуре (II): C₁₆H₂₄N₂O₄S, кристаллы моноклинные, М 340.43, пространственная группа C2, a 10.876(2), b 6.0814(10), c 13.609(4) Å; β 92.47(3)°, V 899.3(4) Å³ при Т 293(2) К, Z 2, d_{выч} 1.257 г/см³, F₀₀₀ 364, кристалл $0.30 \times 0.20 \times 0.02$ мм, $\mu 0.200$ мм⁻¹ [λ (Мо K_{α}) 0.71073 Å], коэффициенты пропускания T_{\min}/T_{\max} $0.9424/0.9960; -6 \le h \le 13, -7 \le k \le 7, -15 \le l \le 16,$ ω -сканирование при $3.00 \le \theta \le 25.48^\circ$, 2410 изме-

560

эффекта стабилизации сульфат-аниона в составе солей алкиламмония, образующихся в системах SO₂–L–H₂O, где L – разнозамещенные амины) в

Синтез и некоторые физико-химические свойства сульфатов бензиламмония

ренных отражений, из которых 1479 независимых (R_{int} 0.0969) и 986 наблюдаемых с $I_{hkl} > 2\sigma(I)$, полнота охвата 94.0%; окончательные показатели достоверности полноматричного уточнения 108 параметров по F^2 по наблюдаемым отражениям: R_F 0.0923, wR^2 0.2041 (R_F 0.1269, wR^2 0.2286 по всем независимым отражениям), S 1.003, $\Delta \rho_{min}/\Delta \rho_{max}$ –0.253/0.387 $\bar{e}/Å^3$.

Сульфат бензиламмония (I). Через смесь 10 мл бензиламина и 20 мл воды, охлажденную до 0°С, пропускали газообразный SO₂ со скоростью 50 мл/мин до pH < 1.0. Затем реакционную смесь подвергали изотермическому испарению при комнатной температуре на воздухе до полного удаления воды. Образующийся твердый продукт промывали бензолом и перекристаллизовывали из воды. Выход 14.30 г (82.3%), кристаллический продукт белого цвета со специфическим запахом, т. пл. 105– 107°С. Масс-спектр, m/z ($I_{\text{отн}}$, %): 107 (69) [M_L]⁺; 106 (100) [M_L-H]⁺; 91 (13) [C₇H₇]⁺; 78 (15); 77 (22) [C₆H₅]⁺; 52 (8); 51 (15); 39 (7). Найдено, %: С 53.49; H 6.24; N 8.64; S 9.84. C₁₄H₂₀N₂O₄S. Вычислено, %: C 53.83; H 6.45; N 8.97; S 10.26. *M* 312.38.

Сульфат *а*-фенилэтиламмония (II) получали аналогично из 10 мл фенилэтиламмония и 50 мл воды. Выход 13.37 г (89.1%), кристаллический продукт белого цвета (без дополнительной очистки), т. пл. 195–200°С. Масс-спектр, m/z ($I_{\text{отн}}$, %): 120 (8) $[M_L-H]^+$; 107 (8); 106 (100) $[M_L-CH_3]^+$; 79 (24); 77 (13) $[C_6H_5]^+$; 53 (9), 51 (10); 44 (18); 43 (7); 42 (13). Найдено, %: С 56.89; Н 7.39; N 8.51; S 9.77. $C_{16}H_{24}N_2O_4S.$ Вычислено, %: С 56.45; Н 7.11; N 8.23; S 9.42. *M* 340.44.

Сульфат N,N-диметилбензиламмония (III) получали аналогично из 10 мл N,N-диметилбензиламина и 50 мл воды. Выход 10.51 г (92.8%), желтая маслообразная жидкость. Масс-спектр, m/z ($I_{\text{отн}}$, %): 135 (40) $[M_L]^+$; 134 (30) $[M_L-H]^+$; 92 (5); 91 (40) $[C_7H_7]^+$; 65 (13%); 58 (100); 44 (10); 42 (17). Найдено, %: С 59.13; H 7.41; N 7.39; S 9.05. $C_{18}H_{28}N_2O_4S$. Вычислено, %: С 58.67; H 7.66; N 7.60; S 8.70. *M* 368.49.

Сульфат дибензиламмония (IV) получали аналогично из 10 мл дибензиламина и 50 мл воды. Выход 8.07 г (91.4%), кристаллический продукт белого цвета, т. пл. 93°С. Масс-спектр, *m/z* (*I*_{отн}, %): 198 (14) [M_L+H]⁺; 196 (14) [M_L-H]⁺; 120 (10); 106 (85); 105 (26); 92 (26); 91 (100) [C₇H₇]⁺; 77 (31%) [C₆H₅]⁺; 65 (14); 64 (17) [SO₂]⁺; 51 (14). Найдено, %: С 67.73;

Н 6.81; N 8.61; S 6.35. С₂₈Н₃₂N₂O₄S. Вычислено, %: С 68.27; Н 6.55; N 5.69; S 6.51. *М* 492.63.

Список литературы

- Rademeyer M. // Acta Cryst. (E). 2003. Vol. 59. N 11. P. o1860.
- [2] Amini M.M., Nasiri S., Ng S.W. // Acta Cryst. (E). 2007. Vol.
 63. N 3. P. o1361.
- [3] Aakeroy C.B., Hitchcock P.B., Moyle B.D., Seddon, K.R. // J. Chem. Soc. Chem. Commun. 1989. Vol. 23. P. o1856.
- [4] Lee C., Harrison W.T.A. // Acta Cryst. (E). 2003. Vol. 59.
 N 12. P. m1151-m1153.
- [5] Cihelka J., Havliček D., Gyepes R., Němec I., Kolev Z. // J. Mol. Str. 2010. Vol. 980. N 1–3. P. 31.
- [6] Гельмбольдт В.О., Гаврилова Л.А., Короева Л.В., Эннан А.А. // Вопросы хим. и хим. технол. 2008. № 2. С. 153.
- [7] Гельмбольдт В.О., Гаврилова Л.А., Эннан А.А. // Вопросы хим. и хим. технол. 2004. № 4. С. 33.
- [8] Hernandez Linares M.-G., Guerrero Luna G., Bernes S. // Acta Cryst. (E). 2010. Vol. 66. N 5. P. o1118.
- [9] Kinbara K., Hashimoto Y., Sukegawa M., Nohira H., Saigo K. // J. Am. Chem. Soc. 1996. Vol. 118. N 14. P. 3441.
- [10] Kinbara K., Kai A., Maekawa Y., Hashimoto Y., Naruse S., Hasegawa M., Saigo K. // J. Chem. Soc. Perkin Trans. 2. 1996. N 2. P. 247.
- [11] Parshad H., Frydenvang K., Liljefors T., Sorensen H.O., Larsen C. // Int. J. Pharm. 2004. Vol. 9. N 269(1). P. 157.
- [12] Armstrong W.W., Moppett C.E., Windisch W.W. Pat. 4331599 (1982). USA.
- [13] Higashide E., Jono K. Pat. EP0175338 A2 (1986).
- [14] Вульфсон Н.С., Заикин В.Г., Микая А.И. Масс-спектрометрия органических соединений. М.: Химия, 1986. С. 285.
- [15] Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- [16] Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных. М.: Мир; БИНОМ. Лаборатория знаний. 2006, 438 с.
- [17] Guerfel T., Bdiri M., Jouini A. // J. Chem. Cryst. 2000. Vol. 30. N 12. P. 799.
- [18] Хома Р.Е., Эннан А.А., Шишкин О.В., Баумер В.Н., Гельмбольдт В.О. // ЖНХ. 2012. Т.57. № 12. С. 1658.
- [19] Климова В.А. Основные методы анализа органических соединений. М.: Химия, 1975. 104 с.
- [20] Sheldrick G.M. // Acta Cryst. (A). 2008. Vol. 64. N 1. P. 112.
- [21] Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. С. 438.