ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2013, том 58, № 7, с. 950–954

ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 546.224-31:547.49

СИНТЕЗ И СТРОЕНИЕ МОНОГИДРАТА СУЛЬФИТА АМИНОГУАНИДИНИЯ

© 2013 г. Р. Е. Хома^{*, **}, В. О. Гельмбольдт^{*, ***}, В. Н. Баумер^{****}, О. В. Шишкин^{****}, Л. В. Короева^{*}

*Физико-химический институт защиты окружающей среды и человека Министерства образования и науки Украины и НАН Украины, Одесса **Одесский национальный университет имени И.И. Мечникова ***Одесский национальный медицинский университет ****НТК "Институт монокристаллов" НАН Украины, Харьков E-mail: rek@onu.edu.ua, r_khoma@farlep.net Поступила в редакцию 20.07.2012 г.

Взаимодействие оксида серы(IV) с водной суспензией гидрокарбоната аминогуанидиния приводит к получению "ониевого" сульфита состава (CN_4H_7)₂SO₃ · H₂O, охарактеризованного данными PCA, ИК-, масс-спектрометрии. Структура соли стабилизирована множественными H-связями NH···O, OH···O, NH···N. Включение пирамидальных SO₃²⁻-ионов в систему H-связей сопровождается пони-

жением их симметрии по сравнению с C_{3v} , что находит отражение в усложнении ИК-спектра соли в области проявления колебаний аниона.

DOI: 10.7868/S0044457X13070143

Гуанидин и его функционализированные производные, в частности аминогуанидин, представляют интерес в связи с их ролью в биохимических процессах [1]. Аминогуанидин рассматривается также в качестве перспективного препарата для лечения диабетической нефропатии [2]. Как одноили двухкислотное основание аминогуанидин образует соли с минеральными и органическими кислотами, в том числе структурно охарактеризованные нитрат [3], сульфат [4], гексафторосиликат [5], дигидрофосфат [6], гидротартрат [7]. Нитрат аминогуанидиния находит применение в качестве высокоэнергетического соединения, реагента в синтезе 5-аминотетразола – ключевого продукта в схемах получения замещенных энергоемких тетразолов [8, 9]. Соли аминогуанидиния [3, 6, 7] интенсивно изучаются также в плане поиска новых материалов для нелинейной оптики [10]. В настоящей публикации описаны метод синтеза, результаты изучения строения и спектральных характеристик нового соединения - моногидрата сульфита аминогуанидиния (CN_4H_7)₂SO₃ · H₂O (I).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез I. В термостатируемую ячейку заливали суспензию гидрокарбоната аминогуанидиния (0.05 моль) в 20 мл воды и пропускали через нее газообразный SO₂ при 0°C со скоростью 50 мл мин⁻¹ до pH < 1.0. Раствор с осадком выдерживали при комнатной температуре на воздухе до испарения воды. Выделенный бесцветный кристаллический продукт I (13.50 г, выход 98.5%) не подвергали дополнительной очистке, $t_{пл} = 122-123^{\circ}$ C.

Содержание азота, углерода и водорода определяли с помощью элементного CHN-анализатора, серы – по Шенигеру [11].

ИК-спектры регистрировали на приборе Spectrum BX II FT-IR System (Perkin-Elmer) (диапазон 4000–350 см⁻¹, образцы в виде таблеток с KBr); масс-спектры EI – на приборе MX-1321 (прямой ввод образца в источник, энергия ионизирующих электронов 70 эВ).

РСА выполнен на дифрактометре Oxford Diffraction, (Мо K_{α} -излучение, графитовый монохроматор, ССD-детектор Sapphire-3). Расшифровка и уточнение структур проведены с использованием комплекса программ SHELX-97 [12]. Атомы водорода найдены из разностного синтеза Фурье и уточнены в изотропном приближении с общей тепловой поправкой.

Основные кристаллографические данные и результаты уточнения структуры I: $C_2H_{16}N_8O_4S$, триклинный, $M_r = 248.29$, пр. гр. *P*-1, a = 5.4765(6), b = 14.3832(16), c = 14.8932(14) Å, $\alpha = 69.324(9)^\circ$, $\beta = 89.459(8)^\circ$, $\gamma = 88.633(9)^\circ$, V = 1097.3(2) Å³ при T = 293 K, Z = 4, $\rho_{\text{выч}} = 1.503$ г/см³,

 $F_{000} = 528$, размер кристалла $0.30 \times 0.15 \times 0.04$ мм, $\mu = 0.311$ мм⁻¹ ($\lambda = 0.71073$ Å), коэффициенты пропускания $T_{\min}/T_{\max} = 0.912/0.988$; $-6 \le h \le 6$, $-15 \le k \le 17$, $-16 \le l \le 17$, ω -сканирование при $3.72^{\circ} \le \theta \le 50.0^{\circ}$, 7153 измеренных отражения, из которых 3663 независимых ($R_{int} = 0.034$) и 3663 наблюдаемых с $I_{hkl} > 2\sigma(I)$, полнота охвата 98.5%; полноматричное уточнение 193 параметров по F^2 . Окончательные показатели достоверности по наблюдаемым отражениям: $R_{\rm F} = 0.0417$, $wR^2 = 0.0979$ ($R_{\rm F} = 0.0635$, $wR^2 = 0.1064$ по всем независимым отражениям), GOOF = 0.980, $\Delta \rho_{\min}/\Delta \rho_{\max} = -0.213/0.460$ e/Å³.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Состав соединения I установлен по данным элементного анализа.

	С	Ν	S	Н
Найдено, %:	9.91;	6.32;	12.52;	6.19.
Для C ₂ H ₁₆ N ₈ O ₄	S			
вычислено, %:	9.68;	6.50;	12.92;	6.50.

Масс-спектр I: $[M]^+$ (m/z = 74, I = 94%); $[SO_2]^+$ (m/z = 64, I = 74%); m/z = 57, I = 23%; $[SO]^+$ (m/z = 48, I = 25%); m/z = 44, I = 19%; m/z = 43, I = 64%; m/z = 42, I = 14%; m/z = 32, I = 100%.

Строение соединения I доказано рентгеноструктурным исследованием. Основные геометрические характеристики и параметры водородных связей структуры приведены в табл. 1 и 2 соответственно.

Взаимное расположение базисных единиц показано на рис. 1. Во всех аминогуанидиниевых фрагментах концевые гидразиновые атомы азота находятся в пирамидальной конфигурации, в

Таблица 1. Длин	ы связей и е	алентные углы в	структуре І
Связь	d. Å	Связь	d. Å

Связь	<i>d</i> , A	Связь	<i>d</i> , A
S(1)–O(1)	1.4993(12)	N(5)–N(6)	1.4143(18)
S(1)–O(3)	1.5065(10)	N(7)–C(2)	1.322(2)
S(1)–O(2)	1.5087(12)	N(8)–C(2)	1.3150(19)
S(2) - O(4)	1.4864(13)	N(9)–C(3)	1.322(2)
S(2)–O(6)	1.4975(13)	N(9)-N(10)	1.4114(18)
S(2)–O(5)	1.4978(10)	N(11)–C(3)	1.3126(18)
N(1) - C(1)	1.3194(17)	N(12)-C(3)	1.318(2)
N(1)–N(2)	1.4119(17)	N(13)-C(4)	1.334(2)
N(3) - C(1)	1.3303(19)	N(13)-N(14)	1.4122(18)
N(4) - C(1)	1.3123(19)	N(15)-C(4)	1.327(2)
N(5) - C(2)	1.3332(17)	N(16)-C(4)	1.3160(19)
Угол	ω, град	Угол	ω, град
O(1)S(1)O(3)	106.23(7)	N(4)C(1)N(3)	120.27(12)
O(1)S(1)O(2)	105.99(7)	N(1)C(1)N(3)	118.31(13)
O(3)S(1)O(2)	105.36(6)	N(8)C(2)N(7)	121.18(12)
O(4)S(2)O(6)	106.35(8)	N(8)C(2)N(5)	120.85(14)
O(4)S(2)O(5)	107.26(7)	N(7)C(2)N(5)	117.97(14)
O(6)S(2)O(5)	105.85(7)	N(11)C(3)N(12)	121.18(14)
C(1)N(1)N(2)	118.72(12)	N(11)C(3)N(9)	120.64(14)
C(2)N(5)N(6)	118.88(12)	N(12)C(3)N(9)	118.17(13)
C(3)N(9)N(10)	119.44(12)	N(16)C(4)N(15)	121.02(14)
C(4)N(13)N(14)	118.44(12)	N(16)C(4)N(13)	120.78(14)
N(4)C(1)N(1)	121.41(13)	N(15)C(4)N(13)	118.21(13)
	. ,		

остальных NH- и NH₂-группах наблюдается планарное окружение атома азота. Каждая из аминогуанидиниевых групп является плоской в пределах 0.02 Å. Атомы серы в сульфит-ионах имеют пирамидальную конфигурацию.

Рис. 1. Нумерация базисных атомов и эллипсоиды тепловых колебаний в структуре I (уровень вероятности 50%).

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 58 № 7 2013

Контакт D–НА	Расстояние, Å				Voontuurtu otovo A
	D–H	HA	DA	УЮЛ ДНА, Град	Координаты атома А
O(7)-H(7D)O(3)	0.793(7)	2.221(5)	2.9527(17)	153.6(9)	<i>x</i> , <i>y</i> , <i>z</i>
O(7)-H(7C)O(3)	0.776(6)	2.121(4)	2.8589(17)	158.7(10)	x - 1, y, z
O(8)-H(8C)O(6)	0.797(7)	2.342(9)	3.0784(17)	154.1(12)	x - 1, y, z
O(8)-H(8C)O(5)	0.797(7)	2.368(6)	2.9948(16)	136.2(8)	x - 1, y, z
O(8)-H(8D)O(5)	0.799(6)	1.983(6)	2.7719(16)	169.1(11)	<i>x</i> , <i>y</i> , <i>z</i>
N(1)-H(1)O(4)	0.882(4)	1.903(5)	2.7842(17)	175.8(7)	-x, -y + 1, -z + 1
N(2)-H(2A)O(7)	0.848(3)	2.261(4)	3.0694(17)	159.3(7)	-x + 1, -y, -z + 1
N(2)-H(2B)O(4)	0.848(4)	2.515(4)	3.3376(19)	163.7(5)	-x + 1, -y + 1, -z + 1
N(3)-H(3A)O(7)	0.819(3)	2.103(3)	2.8769(16)	157.5(9)	<i>x</i> , <i>y</i> , <i>z</i>
N(3)-H(3B)O(5)	0.817(3)	2.383(5)	3.1656(19)	160.5(9)	-x, -y + 1, -z + 1
N(4)-H(4A)O(3)	0.818(3)	2.229(4)	3.0059(14)	158.7(6)	<i>x</i> , <i>y</i> , <i>z</i>
N(4)-H(4B)N(2)	0.817(3)	2.433(6)	3.1438(18)	146.1(8)	-x + 2, -y, -z + 1
N(5)-H(5)O(2)	0.882(5)	2.031(5)	2.8480(17)	153.6(6)	x - 1, y, z
N(6)-H(6A)O(2)	0.850(3)	2.119(4)	2.9576(17)	169.2(5)	<i>x</i> , <i>y</i> , <i>z</i>
N(6)-H(6B)O(8)	0.851(3)	2.273(4)	3.0809(16)	158.5(8)	x + 1, y, z
N(7)-H(7A)O(8)	0.817(3)	2.035(3)	2.8307(16)	164.6(10)	-x - 1, -y + 1, -z + 1
N(7)-H(7B)O(2)	0.817(3)	2.499(5)	3.1483(15)	137.2(8)	x - 1, y, z
N(7)-H(7B)O(3)	0.817(3)	2.596(6)	3.3628(19)	156.8(9)	x - 1, y, z
N(8)-H(8A)O(5)	0.816(3)	2.234(4)	3.0163(15)	160.8(6)	-x, -y + 1, -z + 1
N(8)-H(8B)N(6)	0.818(3)	2.462(7)	3.1627(19)	144.3(8)	-x + 1, -y + 1, -z + 1
N(9)-H(9)O(6)	0.882(4)	1.960(5)	2.8359(17)	171.8(14)	-x + 1, -y + 2, -z
N(10)-H(10A)O(4)	0.848(3)	2.625(4)	3.3899(17)	150.7(5)	-x, -y + 2, -z
N(11)-H(11A)O(1)	0.816(3)	2.140(3)	2.9478(18)	170.5(4)	-x + 2, -y + 1, -z
N(11)-H(11B)N(14)	0.818(3)	2.501(5)	3.2375(18)	150.4(6)	<i>x</i> , <i>y</i> , <i>z</i>
N(12)-H(12A)O(4)	0.817(3)	1.973(3)	2.7906(16)	179.1(7)	-x + 1, -y + 2, -z
N(12)-H(12B)O(3)	0.816(3)	2.093(4)	2.8986(18)	169.1(6)	-x + 2, -y + 1, -z
N(13)-H(13)O(1)	0.881(5)	2.016(5)	2.8912(18)	172.7(15)	x - 1, y, z
N(14)-H(14B)O(1)	0.848(4)	2.267(4)	3.0931(18)	164.8(7)	-x + 1, -y + 1, -z
N(15)-H(15A)O(2)	0.819(3)	1.986(3)	2.7954(16)	169.8(7)	x - 1, y, z
N(15)-H(15B)O(5)	0.817(3)	2.189(4)	2.9874(19)	165.4(6)	<i>x</i> , <i>y</i> , <i>z</i>
N(16)-H(16A)O(6)	0.818(3)	2.117(3)	2.9253(19)	169.7(5)	<i>x</i> , <i>y</i> , <i>z</i>
N(16)-H(16B)N(10)	0.816(3)	2.474(5)	3.1479(18)	140.7(6)	<i>x</i> , <i>y</i> , <i>z</i>

Таблица 2. Характеристики водородных связей D-H...А в структуре I

В кристаллической структуре I наблюдается образование большого числа водородных связей с участием аминогуанидиниевых групп, сульфит-ионов и молекул воды, которые показаны на рис. 2. За счет Н-связей в кристалле образуется трехмерный каркас. Результаты анализа ИК-спектра I приведены в табл. 3. Отнесение колебаний катиона аминогуанидиния проведено с использованием данных [6, 13]. Широкая интенсивная полоса в ИК-спектре с четко выраженными шестью максимумами в области 3420–2500 см⁻¹ связана с колебаниями

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 58 № 7 2013

v(OH) и v(NH) молекул воды и катиона аминогуанидиния. Происхождение сложной полосы с максимумами при 2361, 2349 и 2332 см⁻¹ объясняется, по-видимому, наличием H-связей типа HOH…OSO₂ в структуре "ониевого" сульфита.

В интервале 1750–1500 см⁻¹ наблюдается интенсивная полоса при 1671 см⁻¹ с плечом при 1708 см⁻¹, очевидно, относящаяся к характерным для этой области перекрывающимся ножничным деформационным колебаниям NH₂-групп и молекул воды. В соответствии с [6, 13] полосы около 1461, 1420 и 1383 см⁻¹ могут быть отнесены к смешанным валентно-деформационным колебаниям ν (CN) и δ (CNH).

Согласно [14], колебания пирамидального SO_3^{2-} -иона (идеализированная симметрия C_{3_V}) в ИК-спектрах проявляются в виде трех характеристических групп полос. Первая группа - полосы симметричных и асимметричных дважды вырожденных колебаний $v_s(SO)$ (A_1) и $v_{as}(SO)$ (E) при 967 и 933 см⁻¹ соответственно. В спектре I к этим колебаниям следует отнести интенсивную полосу с максимумом при 931 см⁻¹, полосу средней интенсивности около 1008 см⁻¹ и плечо около 1084 см⁻¹. Аналогичные полосы отсутствуют в ИК-спектрах других солей аминогуанидиния, например, в изученных нами спектрах хлорида и гидрокарбоната. Наличие трех полос поглощения v(SO) в ИКспектре I вместо ожидаемых двух для свободного SO₃²⁻-иона согласуется с данными РСА о понижении симметрии иона в кристаллах комплекса, в результате чего в ИК-спектре наблюдаются полосы расщепленных компонент колебания $v_{as}(SO)$.

Вторая группа — полоса симметричных деформационных колебаний $\delta_s(SO_3^{2-})$ (A_1) при 620 см⁻¹. В спектре I полоса $\delta_s(SO_3^{2-})$ аниона входит в сложную полосу средней интенсивности в области 672—620 см⁻¹, куда наряду с полосами деформационных колебаний катиона включены полосы либрационных колебаний воды $\gamma(H_2O)$.

Третья группа полос относится к дважды вырожденным неплоскостным деформационным колебаниям $\delta_d(SO_3^{2-})$ (*E*) при 469 см⁻¹. Указанное колебание аниона в ИК-спектре I представлено полосой средней интенсивности при 483 см⁻¹ с плечом при 506 см⁻¹. Небольшая величина расщепления этого колебания ($\Delta v = 23$ см⁻¹) отражает факт незначительного искажения пирамидальной геометрии сульфит-иона в структуре I.

Таким образом, продуктом взаимодействия в растворах $SO_2-H_2NC(=NH)NHNH_2-H_2O$ является моногидрат сульфита аминогуанидиния $(CN_4H_7)_2SO_3 \cdot H_2O$, строение которого установлено методом PCA. Структура "ониевого" сульфита

Таблица 3. Волновые числа (см⁻¹) максимумов полос поглощения в ИК-спектре I

ИК-спектр	Отнесение
3420 пл.	ν(NH), ν(OH)
3402 c.	
3300 c.	
3167 cp.	
3020 пл.	
2873 ср.	
2361 cp.	v(OH…OSO ₂)
2349 ср.	
2332 ср.	
1708 пл.	δ(NH ₂), δ(HOH)
1671 c.	
1461 cp.	δ(CNH), ν(CN)
1420 сл.	
1383 сл.	
1250 пл.	$v(NN), v(CN), v_s(CN_3), \rho(NH_2),$
1223 cp.	O(CNH)
1116 cp.	
1084 пл.	$v_{as+s}(SO_3^{2-})$
1008 cp.	
931 c.	
771 cp.	$ω(NH_2), \delta(CN_3)$
711 cp.	
672 пл.	$\delta_{s}(SO_{3}^{2-}), \rho(NH_{2}), \delta(NCN),$
666 пл.	$\delta(\text{CNN}), \gamma(\text{H}_2\text{O})$
620 cp.	
577 cp.	$τ(NH_2), δ(CNH), δ(CN_3)$
506 пл.	$\delta_{d}(SO_{3}^{2-})$
483 cp.	

Примечание. Деформационные колебания: δ – ножничные, δ_d – внеплоскостные; ω – веерные; τ – крутильные; ρ – ма-ятниковые; γ – либрационные.

Рис. 2. Система водородных связей в структуре I (атомы водорода не показаны).

стабилизирована системой H-связей. Вовлечение аниона SO_3^{2-} в межионные H-связи приводит к понижению его симметрии относительно C_{3v} , что сопровождается усложнением ИК-спектра комплекса в области проявления валентных и деформационных колебаний аниона.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ленинджер А. Основы биохимии. Т. 2. М.: Мир, 1985. С. 662.
- 2. Bolton W.K., Emaad Abdel-Rahman // Expert Opinion on Investigation Drugs. 2002. V. 11. № 4. P. 565.
- Akella A., Keszler D.A. // Acta Crystallogr. 1994. V. 50C. P. 1974.
- Koskinen M., Mutikainen I., Elo H. // Z. Naturforsch. B. 1994. V. 49. P. 556.
- Ross C.R. II, Bauer M.R., Nielsonb R.M., Abrahams S.C. // Acta Crystallogr. 1999. V. 55B. P. 246.

- N
 emec I., Machač kova Z., Teubner K. et al. // J. Solid State. Chem. 2004. V. 117. P. 4655.
- 7. Machačkova Z., Němec I., Teubner K. et al. // J. Mol. Struct. 2007. V. 832. P. 101.
- 8. Багал Л.И. Химия и технология инициирующих взрывчатых веществ. М.: Машиностроение, 1975. 456 с.
- 9. Островский В.А., Колдобский Г.И. // Рос. хим. журн. 1997. Т. XLI. № 2. С. 84.
- 10. Дмитриев В.Г., Тарасов Л.В. Прикладная нелинейная оптика. М.: Физматлит, 2004. 512 с.
- 11. Климова В.А. Основные методы анализа органических соединений. М.: Химия, 1975. 104 с.
- 12. Sheldrick G.M. // Acta Crystallogr. 2008. V. 64A. P. 112.
- Давидович Р.Л., Медков М.А., Ризаева М.Д., Буквецкий Б.В. // Изв. АН СССР. Сер. хим. 1982. № 7. С. 1447.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.