ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ, 2014, том 59, № 1, с. 60–65

= ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

УДК 541.49:547.1-304.2:546.224

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ И ТЕРМОХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ СУЛЬФАТА *ТРИС*(ОКСИМЕТИЛ)АМИНОМЕТАНА

© 2014 г. Р. Е. Хома^{*, **}, В. О. Гельмбольдт^{***}, О. В. Шишкин^{****, *****}, В. Н. Баумер^{****, *****}, А. А. Эннан^{*}

*Физико-химический институт защиты окружающей среды и человека, Одесса

**Одесский национальный университет им. И.И. Мечникова

****НТК "Институт монокристаллов" НАН Украины, Харьков

*****Харьковский национальный университет им. В.Н. Каразина

E-mail: rek@onu.edu.ua, r khoma@farlep.net

Поступила в редакцию 02.04.2013 г.

Синтезировано и изучено комплексом экспериментальных методов (элементный анализ, ИК- и КР-спектроскопия, масс-спектрометрия, термогравиметрия) перспективное в применении соединение – сульфат *трис*(оксиметил)аминометана ((TRISH)₂SO₄, C₈H₂₄N₂O₁₀S).

DOI: 10.7868/S0044457X14010061

Трис(оксиметил)аминометан $(HOCH_2)_3CNH_2$ (TRIS) применяется в качестве лиганда в синтезе координационных соединений, а также как компонент буферных систем в биохимических исследованиях [1-3]. Кроме того, соединения на основе TRIS представляют интерес в связи с возможностью их использования в качестве электрооптических материалов и материалов нелинейной оптики [4, 5]. Для TRIS синтезированы и охарактеризованы соли с рядом минеральных и органических кислот, например гексафторосиликат (TRISH)₂SiF₆ [6, 7], в то время как сведения о строении и свойствах сульфата протонированной формы TRIS в литературе отсутствуют. В настоящем сообщении обсуждаются условия синтеза, строение, спектральные характеристики и термические превращения сульфата (TRISH)₂SO₄.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез сульфата *трис* (оксиметил)аминометана (I). В термостатируемую ячейку заливали раствор TRIS (0.05 моль) в 10 мл воды и в режиме барботирования пропускали через него газообразный SO₂ при 0°С со скоростью 50 мл/мин до pH < 1.0. Раствор с осадком выдерживали при комнатной температуре на воздухе до испарения воды. Выделенный кристаллический продукт I белого цвета (16.65 г, выход 97.9%) не подвергали дополнительной очистке.

Содержание азота, углерода и водорода определяли с помощью элементного CHN-анализатора, серы – по Шенигеру [8]. Рентгеноструктурный анализ выполнен на дифрактометре Oxford Diffraction, (Мо K_{α} -излучение, графитовый монохроматор, CCD-детектор Sapphire-3). Расшифровка и уточнение структур выполнены с использованием комплекса программ SHELX-97 [9]. Атомы водорода найдены из разностного синтеза и уточнены по модели "наездника". ИК-спектры регистрировали на приборе Spectrum BX II FT-IR System (Perkin-Elmer) (диапазон 4000-350 см⁻¹. образцы – в виде таблеток с КВr); спектры КР – на спектрометре ДФС-24 (возбуждение от полупроводникового лазера, длина волны 532 нм, интерференционный монохроматор); масс-спектры EI – на приборе MX-1321 (прямой ввод образца в источник, энергия ионизирующих электронов 70 эВ). Термогравиметрические эксперименты проводили на дериватографе OD-102 системы F. Paulik–J. Paulik–L. Erdey (образцы нагревали на воздухе от 20 до 1000°С со скоростью 10 град/мин; навеска вещества 100 мг, держатель образца платиновый тигель без крышки, эталон - прокаленный оксид алюминия).

Основные кристаллографические данные и результаты уточнения для структуры I: $C_8H_{24}N_2O_{10}S$, $M_r = 340.35$; тригональная сингония, пр. гр. *P*-3, a = 15.1249(12), c = 7.6213(7) Å, V = 1509.9(2) Å³ при T = 293(2) K, Z = 4; $\rho = 1.497$ г/см³; $F_{000} = 728$; сферический кристалл диаметром

^{***}Одесский национальный медицинский университет

Рис. 1. Схема нумерации атомов и эллипсоиды тепловых колебаний в структуре I (уровень вероятности 50%). Симметрически эквивалентные атомы обозначены буквами А–Е. Связи в разупорядоченных компонентах сульфат-ионов показаны штрихами.

0.3 мм; $\mu = 0.266 \text{ мм}^{-1} (\lambda (\text{Мо}K_{\alpha}) = 0.71073 \text{ Å});$ коэффициент пропускания $T = 0.925; -10 \le h \le 16$, $-17 \le k \le 17, -9 \le l \le 8;$ ω -сканирование при $3^{\circ} \le \theta \le \le 26^{\circ}$, 3285 измеренных отражений, из которых 1817 независимых ($R_{\text{int}} = 0.039$) и 458 наблюдаемых с $I_{hkl} > 2\sigma(I)$, полнота охвата 91.7%; полноматричное уточнение 135 параметров по F^2 : окончательные показатели достоверности по наблюдаемым отражениям: $R_{\text{F}} = 0.049, wR^2 = 0.166$ ($R_{\text{F}} = 0.091, wR^2 = 0.191$ по всем независимым отражениям); $S = 0.990; \Delta \rho_{\text{min}}/\Delta \rho_{\text{max}} = -0.33/0.41 \text{ e/Å}^3$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Состав соединения I установлен по данным элементного анализа.

	С	Ν	S	Н
Найдено, %:	28.91;	8.45;	9.18;	7.25.
Для C ₆ H ₂₂ N ₂ O ₆	S			
вычислено, %:	28.23;	8.23;	9.24;	7.11.

Координаты атомов, основные геометрические характеристики и параметры водородных связей структуры приведены в табл. 1, 2 и 3 соответственно.

Взаимное расположение структурных единиц вещества показано на рис. 1. Структура I интересна тем, что в общем положении в независимой части элементарной ячейки находится только один катион — базисный $C_3H_{12}NO_3^+$ (атомы N(1), C(1)–C(4), O(7)–O(9) и связанные с ними атомы водорода на рис. 1), второй катион находится на оси третьего порядка, оба сульфат-иона находятся в частных положениях на осях третьего порядка и в центрах симметрии и поэтому разупорядочены. В результате для формульной единицы вещества $(C_3H_{12}NO_3^+)_2(SO_4^{2-})$ наблюдается нетипичное для тригональной ячейки число таких единиц Z = 4. Расположение сульфат-ионов (более тяжелых рассеивающих единиц) в частных положениях приводит к появлению псевдопериода a' = a/2, а их разупорядочение – к заметному повышению диффузного фона рассеянного рентгеновского излучения, в результате чего число наблюдаемых отражений с $I_{hkl} > 2\sigma(I)$ является небольшим независимо от времени экспозиции при съемке.

Упаковка структурных единиц в решетке показана на рис. 2. Видно, что трехмерная сетка водородных связей в кристалле (см. также табл. 3) образуется только между катионами; сульфат-ионы в этих связях не участвуют, что согласуется с фактом разупорядочения анионов в структуре.

Масс-спектр I: $[M_{TRIS}$ -CH₂OH]⁺ (m/z = 90, I = 100%); m/z = 72, I = 24%; m/z = 60, I = 53%; m/z = 44, I = 18%; m/z = 42, I = 43%; m/z = 30, I = 40%.

Результаты анализа колебательных спектров TRIS и соединения I приведены в табл. 4.

В колебательном спектре свободного иона SO_4^{2-} (симметрия T_d) активны следующие колебания: $v_1(A_1, \text{KP}) - 983 \text{ см}^{-1}, v_2(E, \text{KP}) - 450 \text{ см}^{-1}, v_3$ (F_2 , ИК, KР) – 1105 см⁻¹, $v_4(F_2, \text{ИK}, \text{KP}) - 611 \text{ см}^{-1}$ [10].

По данным PCA, ионы SO_4^{2-} в кристаллической структуре I искажены – имеет место локальная симметрия C_1 (согласно расположению суль-

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 1 2014

Атом	x/a	y/b	z/c	$U_{ m _{5KB}}$
S(1)	0	10000	0	28(1)
S(2)	0	5000	0	28(1)
O(1)	0	10000	-1987(4)	52(1)
O(2)	1059(1)	10519(2)	603(2)	52(1)
O(3)	1059(2)	5522(1)	595(3)	52(1)
O(4)	-516(1)	5554(2)	602(3)	52(1)
O(5)	-550(1)	3932(2)	581(3)	52(1)
O(6)	-3(1)	4989(1)	-2003(3)	52(1)
O(7)	3257(1)	9960(1)	3362(1)	36(1)
O(8)	45(1)	8298(1)	3360(1)	38(1)
O(9)	1698(1)	6742(1)	3361(1)	38(1)
O(10)	3293(1)	8250(1)	6641(1)	37(1)
N(1)	1663(1)	8332(1)	5034(1)	25(1)
N(2)	3333	6667	4977(2)	26(1)
C(1)	1670(1)	8336(1)	3074(2)	27(1)
C(2)	2318(1)	9442(1)	2442(2)	35(1)
C(3)	567(1)	7882(1)	2429(2)	35(1)
C(4)	2112(1)	7676(1)	2435(2)	36(1)
C(5)	3333	6667	6930(3)	29(1)
C(6)	2882(1)	7320(1)	7559(2)	34(1)
H(7)	3731	10125	2674	55
H(8)	-77	8649	2695	57
H(9)	1338	6269	2699	57
H(10)	3633	8724	7313	56
H(1A)	1553	8824	5422	37
H(1B)	2263	8439	5429	37
H(1C)	1169	7730	5417	37
H(2)	3748	7173	4649	40
H(2A)	2453	9445	1197	42
H(2B)	1941	9798	2613	42
H(3A)	569	8023	1187	42
H(3B)	209	7147	2583	42
H(4A)	1969	7537	1194	43
H(4B)	2847	8050	2585	43
H(6A)	2147	6942	7400	41
H(6B)	3019	7459	8802	41

Таблица 1. Координаты атомов ($\times 10^4$) и эквивалентные тепловые поправки ($\mathring{A}^2 \times 10^3$) в структуре I

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 1 2014

Связь	<i>d</i> ,	Å	Связь	d, Å	Св	язь	<i>d</i> , Å
S(1)–O(1)	1.514	4(3)	O(7)–C(2)	1.4171(15)	N(2)-C	(5)	1.488(3)
S(1)–O(2)	1.461	1(18)	O(8)–C(3)	1.4204(16)	C(1)-C((4)	1.5312(19)
S(2)–O(3)	1.459	98(19)	O(9)–C(4)	1.4152(15)	C(1)-C((3)	1.5336(16)
S(2)–O(5)	1.468	8(2)	O(10)–C(6)	1.4077(15)	C(1)-C((2)	1.5340(17)
S(2)–O(4)	1.475	5(2)	N(1)–C(1)	1.4934(16)	C(5)-C((6)	1.5316(16)
S(2)–O(6)	1.527	7(2)					
Угол			ω, град	Угол		ω, град	
O(2)#1S(1)O(2)		1	10.59(7)	C(4)C(1)C(3)		109.79(10)	
O(2)S(1)O(1)		1	08.33(7)	N(1)C(1)C(2)		108.52(10)	
O(3)S(2)O(5)		1	11.49(11)	C(4)C(1)C(2)		1	11.19(11)
O(3)S(2)O(4)		1	10.25(11)	C(3)C(1)C(2) 11		10.25(12)	
O(5)S(2)O(4)		1	11.20(11)	O(7)C(2)C(1)		1	11.40(11)
O(3)S(2)O(6)	3)S(2)O(6) 108.25(10)		O(8)C(3)C(1)		111.30(11)		
O(5)S(2)O(6)		1	07.00(10)	O(9)C(4)C(1)		111.89(11)	
O(4)S(2)O(6)		1	08.49(11)	N(2)C(5)C(6)		108.25(10)	
N(1)C(1)C(4)		1	08.66(11)	C(6)#2C(5)C(6)		110.67(9)	
N(1)C(1)C(3)		1	08.36(10)	O(10)C(6)C(5)		1	11.87(11)

Таблица 2. Длины связей и валентные углы в структуре I

Симметрические преобразования для получения эквивалентных атомов: #1 - y + 1, x - y + 2, z; #2 - y + 1, x - y + 1, z.

Таблица 3. Характеристики водородных связей D-H...А в структуре I

Контакт D–НА	Расстояние, Å				V
	D-H	HA	DA	уюл DнА, град	координаты атома А
O(7)-H(7)O(6)	0.82	2.10	2.818(2)	146.4	x - y + 1, x + 1, -z
O(7)-H(7)O(4)	0.82	2.75	3.378(2)	135.0	x - y + 1, x + 1, -z
O(7)-H(7)O(5)	0.82	1.88	2.659(2)	159.3	-x+y, -x+1, z
O(8)-H(8)O(2)	0.82	1.88	2.647(2)	155.2	-x + y - 1, -x + 1, z
O(8)-H(8)O(2)	0.82	2.74	3.386(2)	136.5	y-1, -x+y, -z
O(9)-H(9)O(6)	0.82	2.03	2.7895(19)	153.1	-x, -y+1, -z
O(9)-H(9)O(3)	0.82	1.88	2.646(2)	153.9	
O(9)-H(9)O(5)	0.82	2.72	3.363(2)	136.5	-x, -y+1, -z
O(10)-H(10)O(6)	0.82	2.07	2.810(2)	150.8	-x + y, -x + 1, z + 1
O(10)-H(10)O(3)	0.82	2.74	3.384(2)	136.4	-x + y, -x + 1, z + 1
O(10)-H(10)O(4)	0.82	1.88	2.651(2)	156.4	x - y + 1, x + 1, -z + 1
N(1)-H(1A)O(8)	0.89	1.95	2.8103(13)	161.0	x - y + 1, x + 1, -z + 1
N(1)-H(1B)O(10)	0.89	1.95	2.8100(14)	161.6	
N(1)-H(1C)O(7)	0.89	1.95	2.8028(13)	161.3	y - 1, -x + y, -z + 1
N(2)-H(2)O(9)	0.75	2.09	2.8159(12)	162.6	-x+y, -x+1, z

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 1 2014

Рис. 2. Проекция ху0 структуры I (атомы водорода не показаны). Водородные связи изображены штриховыми линиями.

фат-ионов в структуре, их симметрия C_{3i}), что приводит к изменению правил отбора в ИК- и КР-спектрах соли. В спектре КР I в области проявления частот асимметричных валентных колебаний иона SO₄²⁻ найдены линии средней интенсивности (1129, 1036 см⁻¹) и интенсивная линия (1056 см⁻¹), которые можно отнести к компонентам расщепления трижды вырожденного колебания v₃(F_2). В ИК-спектре им соответствуют новая полоса средней интенсивности при 1131 см⁻¹ и сильная сложная полоса ~1036 см⁻¹, включающая, по-видимому, колебания v(CO) и v(CN).

Понижение симметрии иона $SO_4^{2^-}$ сопровождается появлением в ИК-спектре I полосы полносимметричного валентного колебания $v_1(A_1)$ при 990 см⁻¹. В спектре КР эти колебания представлены линией при 978 см⁻¹.

Три компоненты асимметричного деформационного колебания v_4 иона SO₄²⁻ проявляются в ИКспектре I в виде достаточно интенсивной дублетной полосы с максимумами при 618 и 598 см⁻¹ и четко разрешенного плеча при 578 см⁻¹. Эти полосы легко интерпретируются при сопоставлении ИК-спектров I и TRIS. В спектре КР указанные колебания присутствуют в виде двух линий средней интенсивности при 607 и 580 см⁻¹.

ИК-спектр I в области 526—423 см⁻¹, характерной для частот симметричных деформационных колебаний иона SO_4^{2-} и внеплоскостных деформационных колебаний катиона, содержит четыре малоинтенсивные полосы (табл. 4), тогда как в спектре КР обнаружены только две линии слабой интенсивности при 456 и 411 см⁻¹. Это позволяет отнести полосы в ИК-спектре при 490 и 423 см⁻¹ к расщепленным компонентам колебания $v_2(E)$, а полосы 526 и 514 см⁻¹ – к скелетным колебаниям катиона, которые в спектрах КР, как правило, не проявляются.

Из собственных колебаний катиона в ИКспектре I отметим наличие широкой полосы v(OH) с максимумом ~3400 см⁻¹, высокочастотный сдвиг которой при переходе от спектра TRIS к спектру I обусловлен перераспределением систем H-связей. В области 3290–2365 см⁻¹ наблюдаются широкие структурированные полосы валентных колебаний NH₃⁺-групп, участвующих в H-связывании. Колебания $\delta_{as,s}(NH_3^+)$ проявляются в виде двух сравнительно интенсивных полос при 1632 и 1552 см⁻¹. В спектре КР колебаниям $v(NH_3^+)$ соответствуют линии средней интенсивности при 3096 и 2771 см⁻¹; малоактивные в спектрах КР колебания $\delta(NH_3^+)$ фиксируются в виде линии слабой интенсивности при 1648 см⁻¹.

Судя по данным термогравиметрии, термолиз соединения I сопровождается плавлением соли (эндоэффект при 130–155°С, не сопровождаемый потерей массы) с последующим элиминированием в газовую фазу 1 моля H_2SO_4 (продуктов ее разложения; эндоэффект при 225–260°С, $\Delta m_{\rm эксп} = 27.5\%$, $\Delta m_{\rm pacu} = 28.8\%$) [11] и продуктов деструкции TRIS (эндоэффект при $t_{\rm макс} = 285^{\circ}$ С). Обращают на себя внимание очевидные аналогии в термохимическом поведении солей I и (TRISH)₂SiF₆ [6]: гексафторосиликат плавится (эндоэффект при

Таблица 4. Волновые числа (см⁻¹) максимумов полос (линий) поглощения в ИК-спектрах и спектрах КР TRIS и I

TRIS	0	$(TRISH)_2SO_4(I)$		
ИК	Отнесение	ИК	KP	
		3400 с.ш.		
3370 c.				
3330 пл.	$v(O\Pi), v_{as,s}(IN\Pi_2),$	2200		
3300 c.	$v(NH_3^{+})$	3290 пл. 2220 г.т.		
5200 ср.ш.		3230 С.Ш. 3000 с	3006 cm	
2670 cp III		2705 пл	2771 cp.	
2070 ср.ш.	$\mathcal{N}(\mathbf{NH}^{+})$	2703 пл.	2771 c p.	
	V(1N113)	2365 cp.		
	8 (NH)	1632 c.	1648 сл.	
1600 c.	$O_{as,s}(1 \times 12),$			
	$\delta_{as,s}(NH_3^+),$	1552 c.		
1500 пл.	δ(CNH)			
1400 сл.				
1340 cp.		1343 сл.		
1310 cp.	$\delta(COH), \tau(CH_2),$		1306 cp.	
1295 cp.	$\rho(NH_3^+), \nu(CC)$	1295 cp.		
1260 сл.		1245 сл.		
1215 cp.	$\omega(\mathrm{NH}_2), \omega(\mathrm{NH}_3^+)$	1195 пл.	1206 cp.	
1175 cp.	ω(CH ₂)	1150 cp.	1154 сл.	
1090 cp.		1131 cp.	1129 cp.	
1075 cp.	ν(CO), ν(CN),	1065 c.	1066 cp.	
	$v_3(SO_4)$		1056 c.	
1040 c.		1036 c.	1036 cp.	
1020 cp.	v(CC)			
	$v_1(SO_4)$	990 cp.	978 cp.	
960 cp.		944 c.	965 c.	
	$(\mathbf{N}\mathbf{H}\mathbf{H}) = (\mathbf{N}\mathbf{H}\mathbf{H}^{\dagger})$		925 cp.	
915 сл.	$\rho(\mathbf{NH}_2), \rho(\mathbf{NH}_3), \rho(\mathbf{CH}_3)$	915 cp.	914 cp.	
890 cp.	$p(C\Pi_2),$	870 cp.		
805 cp.				
785 cp.		787 сл.	765 c.	
	$\tau(COI), \sigma(CCC), \tau(CO)$	686 сл.	696 cp.	
630 cp.		676 сл.		
		618 cp.	607 cp.	
	$v_4(SO_4)$	598 cp.	580 cp.	
		578 пл.		
520 сл.		526 сл.		
	SINCO SICCO	514 сл.		
470 сл.	$v_{2}(SO_{4})$	490 сл.	456 сл.	
445 сл.	211 47			
		423 сл.	411 сл.	

* Деформационные колебания: δ – ножничное, ω – веерное, τ – крутильное, ρ – маятниковое.

145–161°С) и разлагается с выделением в газовую фазу 1 моля SiF₄ и 2 молей HF (эндоэффект при 200–268°С). Тепловые эффекты в более высокой области температур связаны с процессами кипения и разложения TRIS. Отмеченный факт согласуется с близостью кислотных характеристик серной и кремнефтороводородной кислот и, как следствие, практически одинаковой термической устойчивостью соответствующих "ониевых" солей.

В заключение отметим, что структурно близкие к TRIS этаноламины в аналогичных условиях взаимодействия с оксидом серы(IV) образуют гидросульфитные (сульфитные) "ониевые" соли [12, 13]. Очевидно, что для выяснения вопроса взаимосвязи строения органического основания L и состава соответствующего "ониевого" продукта взаимодействия в системах SO_2-L-H_2O , контактирующего с кислородом воздуха (сульфитная, гидросульфитная или сульфатная форма), необходимо проведение дополнительных исследований на широком круге оснований различных структурных классов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Nakamura T., Nagasawa T., Yu F. et al.* // Appl. Environ. Microbiol. 1994. V. 60. № 12. P. 4630.
- Danel F., Paetzel M., Strynadka N.C.J., Page M.G.P. // Biochemistry. 2001. V. 40. P. 9412.
- 3. *Kisilevsky R., Szarek W., Weaver D.* Pat. USA № 5972328, 26.10.1999.
- Tamarit J.Li, Perez-Jubindo M.A., de la Fuente M.A. // J. Phys.: Condens. Matter. 1997. V. 9. № 25. P. 5469.
- Averbuch-Pouchot M.T. // C. R. Acad. Sci. Paris. 1994. V. 318. P. 191.
- Гельмбольдт В.О., Гаврилова Л.А., Сохраненко Г.П., Эннан А.А. // Журн. неорган. химии. 2003. Т. 48. № 9. С. 1569.
- Kosturek B., Czapla Z., Waśkowska A. // Z. Natur forsch. 2003. V. 58A. P. 121.
- 8. *Климова В.А.* Основные методы анализа органических соединений. М.: Химия, 1975. 104 с.
- 9. *Sheldrick G.M.* // Acta Crystallogr. 2008. V. 64A. № 1. P. 112.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- Справочник кислотчика / Под ред. Мамина К.М. Изд. 2-е, доп. и перераб. М.: Химия, 1971. С. 85.
- 12. *Хома Р.Е., Гельмбольдт В.О., Короева Л.В. и др.* // Вопросы химии и хим. технологии. 2012. № 1. С. 133.
- Хома Р.Е., Эннан А.А., Мазепа А.В., Гельмбольдт В.О. // Вопросы химии и хим. технологии. 2013. № 1. С. 136.