СИНТЕЗ, СТРУКТУРЫ, ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ АМИНОМЕТАНСУЛЬФОКИСЛОТ

Хома Р. Е. ^{1,2}, Эннан А. А. ², Гридина Т. Л. ³, Федчук А. С. ⁴, Лозицкий В. П. ⁴, Годован В. В. ³, Антоненко П. Б. ³, Трокай И. И. ¹, Гельмбольдт В. О. ³ ¹Одесский национальный университет имени И. И. Мечникова, г. Одесса, Украина ²Физико-химический институт защиты окружающей среды и человека МОН и НАН Украины, г. Одесса, Украина ³Одесский национальный медицинский университет, г. Одесса, Украина ⁴Научно-Исследовательский Центр БППП «Биомедицинская проверка продуктов и препаратов», г. Одесса, Украина е-таіl: rek@onu.edu.ua

Аминометансульфокислота (АМСК, I), ее N-замещенные производные и их соли обладают широким спектром биологической активности — противовирусной (противогриппозной), антимиотической, цитостатической, бактерицидной [1, 2], что стимулирует поиск новых потенциальных лекарственных препаратов на их основе.

Ранее [3] нами был предложен новый метод синтеза N-производных аминометансульфокислоты, отличающийся от известных высоким выходом целевых продуктов (до 95%), дешевизной и доступностью используемого сырья. По оригинальной методике синтезирован ряд N-производных АМСК (R-AMCK):

где R – CH₃ (II), HOCH₂CH₂ (III), (HOCH₂)₃C (IV), (CH₃)₃C (V) и C₆H₅CH₂ (VI).

Полученные соединения охарактеризованы методами элементного анализа, РСА, КР-, ИК-спектроскопии, масс-спектрометрии. По данным РСА, в случае реакционной системы с участием Tris (IV) образуется продукт гидролиза целевого соединения – гидроксиметансульфонат *трис* (оксиметил) аминометана.

С целью установления температурной зависимости ионизации АМСК, R-АМСК и сравнения с известными данными проведено рН-метрическое исследование их поведения при 298-313 К. На основании полученных данных определены значения р K_2 , границы рН буферного действия и оценена буферная емкость растворов R-AMCK. Методом QSAR рассчитаны значения липофильности ($\log P_{\rm ow}$) и молярной рефракции (MR) для

последующего прогнозирования физико-химических и токсикологических свойств указанных соединений (таблица). Определены термодинамические функции (ΔG , ΔH и ΔS) диссоциации по второй ступени соединений (**I**)–(**III**), (**V**) и (**VI**) в изоэлектрической точке (μ = 4,75·10⁻⁴ M) при 298-313 К.

Таблица Структурные и физико-химические характеристики аминометансульфокислот

Кислота	M, г/моль	V , E^3	pK_2	$\mathrm{pH}_{6\mathrm{y}\Phi}$	ΔρΗ/ΔΤ	MR, Å	$log P_{ow}$
I	111,12	192,809	5,75	5,95 – 11,75	0,0438	19,38	-0,67
II	125,15	506,8(3)	9,67	7,05 - 11,70	0,0465	24,15	-0,27
III	155,17	637,32(8)	9,36	$7,5\overline{5} - 11,70$	0,0490	30,44	-0,71
V	167,23	825,9(5)	9,96	8,06 – 11,35	0,0511	37,95	0,57
VI	201,25		8,76	6,50 – 11,15	0,0997	48,76	1,51

Обозначение: M — молярная масса; V — молярный объем; pK_2 — отрицательный десятичный логарифм K_2 ; MR — молярная рефракция; $P_{\rm ow}$ — коэффициент распределения в системе октанол — вода.

Данная группа производных АМСК обладает приемлемыми физико-химическими свойствами (стабильность, водорастворимость и др.), что предполагает целесообразность их всестороннего фармакологического исследования.

Для соединений **I**, **II**, **V** и **VI** (в виде натриевых солей) была определена острая токсичность на крысах-самцах линии Вистар при пероральном и парентеральном путях введения. Результаты исследования соли соединения **II** при внутрибрюшинном введение в дозе 2000 мг/кг позволили отнести его к классу практически нетоксичных веществ по классификации К. К. Сидорова (1973). Однако при парентеральном применении других солей (**I**, **V** и **VI**) в дозах от 1000 до 2000 мг/кг наблюдалось выраженное местнораздражающее действие в месте введения. Пероральное применение Na солей **I**, **II**, **III**, **V** и **VI** в дозе 5000 мг/кг не вызывало гибели крыс, то есть исследуемые соединения при данном пути введения относятся к практически нетоксичным веществам.

Противовирусную активность в отношении вирусов гриппа А/Гонконг/1/68 (H3N2) и А/РК/8/34 (H1N1) изучали с использованием культуры ткани хорион-аллантоисных оболочек (XAO) 10-12-дневных куриных эмбрионов [4]. Получены результаты, свидетельствующие о статистически значимом подавлении репродукции вируса гриппа А/Гонконг/1/68 (H3N2) препаратами V и VI на культуре XAO. Аналогичные результаты получены и в отношении штамма вируса гриппа А/РК/8/34(H1N1). Препараты V и VI статистически достоверно тормозили репродукцию этого вируса на тканевой культуре XAO.

Это свидетельствует о целесообразности дальнейших исследований токсикофармакологического профиля новых производных аминометансульфокислоты.

Список литературы

- 1. Batyeva É.S., Andreev S.V. // Pharm. Chem. J. 1991. Vol. 25, No 4. P. 272-274.
- 2. *Gryaznov P.I.*, *Kataeva O.N.*, *Naumova O.E.*, *Musin R.Z.*, *Al'fonsov V.A.* // Russ. J. Gen. Chem. –2010. V. 80, No 4. P. 761-764.
- 3. Хома Р.Е., Шестака А.А., Шишкин О.В., Баумер В.Н., Брусиловский Ю.Э., Короева Л.В., Эннан А.А., Гельмбольдт В.О. // Журн. общ. химии. 2011. Т. 81, № 3. С. 525-526.
- 4. Доклинические исследования лекарственных средств. Методические рекомендации: [ред. А.В.Стефанов]. К.: Авиценна, 2002. С.395-420.