В. О. Гельмбольдт¹, В. Ю. Анисимов¹, И. О. Шишкин¹, Р. Е. Хома², К. П. Шабельник³, С. И. Коваленко³

ГЕКСАФТОРОСИЛИКАТЫ 3,5-ДИЗАМЕЩЕННЫХ КАТИОНОВ 1,2,4-ТРИАЗОЛИЯ КАК ПОТЕНЦИАЛЬНЫЕ КАРИЕСПРОТЕКТОРНЫЕ АГЕНТЫ

¹Одесский национальный медицинский университет, г. Одесса, Украина ²Одесский национальный университет им. И. И. Мечникова, г. Одесса, Украина ³Запорожский государственный медицинский университет, г. Запорожье, Украина

В работе представлены результаты синтеза и изучения физико-химических характеристик ряда гексафторосиликатов 3,5-дизамещенных катионов 1,2,4-триазолия состава (LH) $_{2}SiF_{6}$ ·nH $_{2}O(L_{1} = 3$ -пиридин-3-ил-5-(2'-аминофенил)-1H-1,2,4-триазол, n = 1; $L_{2} = 3$ -бензофуран-2-ил-5-(2'-амино-3'-метил-фенил)-1H-1,2,4-триазол, n = 1; $L_{3} = 5$ -(2'-амино-5'-хлоро-фенил)-3-фуран-3-ил-1H-1,2,4-триазол, n = 1; $L_{4} = 3$ -адамантан-1-ил-5-(2'-амино- ϕ енил)-1H-1,2,4-триазол, n = 2; $L_{5} = 5$ -(2'-амино-3'-метил- ϕ енил)-3фуран-3-ил-1H-1,2,4-триазол, n = 1; $L_{6} = 3$ -тиофен-3-ил-5-(2'-амино-3'-фторо- ϕ енил)-1H-1,2,4-триазол, n = 2; $L_{7} = 3$ -тиофен-2-ил-5-(2'-амино-3'- ϕ торо- ϕ енил)-1H-1,2,4-триазол, n = 3), представляющих интерес в качестве потенциальных кариеспротекторных агентов. Синтез гексафторосиликатов осуществляли путем взаимодействия метанольных растворов гетероциклических оснований L с 45%-ной кремнефтороводородной кислотой (мольные соотношения L : $H_{2}SiF_{6} = 1$: 3). Полученные соединения охарактеризованы методами элементного анализа, ИК-, ЯМР ¹⁹ F-спектроскопии, масс-спектрометрии, термогравиметрии. Спектральные данные подтверждают ионное строение выделенных продуктов с вероятной реализацией межионных H-связей, приводящих к искажению октаэдрической (O_h) геометрии анионов SiF $_6^{2-}$. По данным расчетов эффективных зарядов на атомах $L_1 - L_7$ методом РМЗ, центром протонирования в катионах LH⁺ является атом азота N_2 пиридинового типа. В водных растворах гексафторосиликаты подвергаются гидролизу с образованием аниона [SiF₅(H₂O)]⁻. Оценка кариеспротекторного действия гексафторсиликатов 1,2,4-триазолия будет являться предметом наших дальнейших исследований.

Ключевые слова: гексафторосиликаты, катионы 1,2,4-триазолия, гидролиз, кариеспротекторные агенты.

ВВЕДЕНИЕ

В последние годы благодаря работам исследователей из Японии и США [1-5] была продемонстрирована перспективность использования гексафторосиликата аммония (ГФСА) в качестве кариеспротекторного агента. В частности, результаты [1–5] показали ряд преимуществ ГФСА по сравнению со фторидом диамминсеребра $[Ag(NH_2)_2]F$ [6], активно используемом в практике детской стоматологии Японии, Австралии, Китая, Кубы и Непала. К недостаткам фторида диамминсеребра относят появление потемнения обработанных твердых тканей зубов [7]. Указанный эффект при применении ГФСА отсутствует. В свою очередь, ГФСА обеспечивает кислотоустойчивость зубной эмали и дентина, увеличивает кристалличность зубной эмали, а также уменьшает гиперчувствительность дентина. Публикации [1-5] стимулировали наши исследования, направленные на поиск новых эффективных кариеспротекторных агентов в ряду гексафторосиликатов с биологически активными «ониевыми» катионами. К таким соединениям относятся синтезированные недавно гексафторосиликаты пиридиния/ дипиридиния [8], цетилпиридиния [9], замещенных производных гуанидиния [10], катионы которых проявляют антибактериальную активность и другие виды биологической активности. Согласно данным [11], перечисленные «ониевые» гексафторосиликаты обладают высокой кариеспротекторной эффективностью, достоверно превышая по ряду показателей фторид натрия. Настоящая работа выполнена в плане развития исследований [8–11] и посвящена синтезу и изучению физикохимических характеристик гексафторосиликатов 3,5-дизамещенных производных 1,2,4-триазолия.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовали 45%-ную кремнефтороводородную кислоту (КФК) квалификации «ч.д.а.». Производные 1,2,4-триазола – 3-пиридин-3-ил-5-(2'-аминофенил)-1H-1,2,4-триазол (L₁), 3-бензофуран-2ил-5-(2'-амино-3'-метил-фенил)-1Н-1,2,4триазол (L₂), 5-(2'-амино-5'-хлоро-фенил)-3-фуран-3-ил-1Н-1,2,4-триазол $(L_{2}),$ 3-адамантан-1-ил-5-(2'-амино-фенил)-1Н-1,2,4-триазол (L₄), 5-(2'-амино-3'-метил-фенил)-3-фуран-3-ил-1Н-1,2,4-триазол (L₅), 3-тиофен-3-ил-5-(2'-амино-3'-фторофенил)-1H-1,2,4-триазол (L₆), 3-тиофен-2ил-5-(2'-амино-3'-фторо-фенил)-1Н-1,2,4триазол (L₂) синтезированы на кафедре органической и биоорганической химии Запорожского государственного медицинского университета по методике [12].

Синтез гексафторсиликатов осуществляли путем взаимодействия метанольных растворов производных 1,2,4-триазола (L) и раствора 45%-ной КФК (мольное соотношение L : КФК = 1 : 3), реакционные смеси выдерживали при комнатной температуре до испарения растворителей с образованием окрашенных аморфных продуктов.

Содержание азота определяли по Кьельдалю [13], кремния – фотометрическим методом [14] путем фотометрирования желтого кремнемолибденового комплекса (длина волны 380 нм) с использованием спектрофотометра КФК-3.

ИК-спектры поглощения регистрировали на спектрофотометре Spectrum BX II FT-IR System (Perkin-Elmer) (область 4000-350 см-1, образцы в виде таблеток с KBr). Масс-спектры ЕІ регистрировали на спектрометре MX-1321 (прямой ввод образца в источник, энергия ионизирующих электронов 70 эВ). Спектры ЯМР¹⁹F записывали на спектрометре Varian Gemini-200 (188,14 Мгц, растворитель – D_2O_3 , эталон – CFCl₃). Термогравиметрический анализ проводили на дериватографе Q-1500 D системы F. Paulik – J. Paulik – L. Erdey (платиновые тигли, навески вещества 80-100 мг, интервал температур 20-1000°С, скорость нагревания образцов -10 град/мин, эталон – прокаленный оксид алюминия). Распределение эффективных зарядов на атомах лигандов L₁-L₇ с оптимизированной геометрией рассчитывали полуэмпирическим методом PM3 с использованием программы HyperChem 7.01 [15].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Состав выделенных соединений установлен по данным элементного анализа.

Найдено, %: N – 21,82; Si – 4,39.

Для $(L_1H)_2SiF_6H_2O$ (I) вычислено, %: N – 22,00; Si – 4,41.

Масс-спектр I: $[ML_1]^+$ (*m/z* = 237, *I* = 100%), $[SiF_3]^+$ (*m/z* = 85, *I* = 12%).

Спектр Я $MP^{19}F$ I (Si F_6^{2-}): $\delta(^{19}F) = -129,11$ м.д.

Найдено, %: N – 15,21; Si – 3,85.

Для $(L_2H)_2SiF_6H_2O$ (II) вычислено, %: N – 15,09; Si – 3,78.

Масс-спектр **II**: $[ML_2]^+$ (*m/z* = 290, *I* = 100%), $[C_8H_6O]^+$ (*m/z* = 118, *I* = 6%), $[C_8H_6O-CHO]^+$ (*m/z* = 89, *I* = 6%), $[SiF_3]^+$ (*m/z* = 85, *I* = 15%).

Спектр ЯМР¹⁹F II (SiF₆²⁻): δ (¹⁹F) = -130,09 м.д.

Найдено, %: N – 16,28; Si – 4,27.

Для $(L_3H)_2$ SiF₆·H₂O (**III**) вычислено, %: N - 16,40; Si - 4,11.

Macc-cnextp III: $[ML_3]^+$ (m/z = 260, I = 100%), $[SiF_3]^+$ (m/z = 85, I = 66%), $[C_4H_4O-CHO]^+$ (m/z = 39, I = 7%).

Спектр ЯМР¹⁹F III (SiF₆²⁻): δ (¹⁹F) = -130,13 м.д.

Найдено, % N – 14,74; Si – 3,51.

Для (L_4H)₂SiF₆·2H₂O (**IV**) вычислено, %: N – 14,57; Si – 3,65.

Масс-спектр IV: $[ML_4]^+$ (*m*/*z* = 294,

I = 100%), $[C_{10}H_{15}]^+$ (*m/z* = 135, I = 5%), [SiF₃]⁺ (*m/z* = 85, I = 39%). Спектр ЯМР¹⁹F **IV** (SiF₆²⁻): $\delta(^{19}F) = -130,29$ м.д.

Найдено, %: N – 17,23; Si – 4,43.

Для $(L_5H)_5$ SiF₆·H₂O (V) вычислено, %:

N – 17,44; Si – 4,37.

Масс-спектр EI V: $[ML_5]^+$ (m/z = 240, I = 100%), $[SiF_3]^+$ (m/z = 85, I = 37%), $[C_4H_4O-CHO]^+$ (m/z = 39, I = 6%). Спектр ЯМР¹⁹F V (SiF₆²⁻): δ (¹⁹F) =

-130,31 м.д. Найдено, %: N – 16,08; Si – 3,88.

Для (L₆H)₂SiF₆·2H₂O (**VI**) вычислено, %: N – 15,99; Si – 4,01.

Macc-cnerp VI: $[ML_6]^+$ (m/z = 260, I = 100%), $[C_5H_5S]^+$ (m/z = 97, I = 14%), $[SiF_3]^+$ (m/z = 85, I = 21%), $[CHS]^+$ (m/z = 45, I = 6%), $[C_3H_3]^+$ (m/z = 39, I = 7%).

Спектр $ЯМР^{19}F$ VI (SiF_6^{2-}) : $\delta(^{19}F) = -130,18$ м.д.

Найдено, %: N – 15,67; Si – 4,08.

Для $(L_7H)_2$ SiF₆·3H₂O (**VII**) вычислено, %: N – 15,60; Si – 3,91.

Macc-cnerp VII: $[ML_7]^+$ (m/z = 260, I = 100%), $[C_5H_5S]^+$ (m/z = 97, I = 14%), $[SiF_3]^+$ (m/z = 85, I = 15%), $[C_3H_3]^+$ (m/z = 39, I = 6%).

Спектр ЯМР¹⁹F VII (SiF₆²⁻): δ (¹⁹F) = -129,52 м.д.

В масс-спектрах **I–VII** регистрируются пики молекулярных ионов $[ML]^+$ с максимальной интенсивностью и их фрагментов, а также пики иона $[SiF_3]^+$ – характерного продукта фрагментации SiF_4 , образующегося при деструкции гексафторосиликатов.

Характеристики ИК-спектров соединений I-VII представлены в таблице 1. Валентные v(NH), $v(N^+H)$, v(OH) и деформационные колебания $\delta(NH_2)$, $\delta(H_2O)$ проявляются в областях 3520-3025 й 1650-1600 см⁻¹ соответственно. Уширение полос колебаний v(NH), v(N+H) и v(OH) может отражать участие соответствующих фрагментов «ониевых» катионов и молекул воды в H-связях NH·F и OH·F с анионами SiF₆²⁻. В свою очередь, расщепление полос колебаний v(SiF) и $\delta(SiF_2)$ на две и три компоненты указывает на понижение симметрии анионов SiF₆²⁻ по сравнению с *О*_ь-симметрией (активны одно колебание $v(SiF) (F_{1u})$ и одно – $\delta(SiF_2) (F_{1u}))$ в результате возмущающего эффекта Н-связей. При отсутствии структурных данных корректное определение центра протонирования в катионах солей I-VII несколько проблематично. Наиболее вероятным центром локализации протона является один из атомов азота пиридинового типа 1,2,4-триазольного цикла, что подтверждается результатами расчетов эффективных зарядов на атомах L₁-L₇ (таблица 2): максимальный эффективный отрицательный заряд обнаруживается на атоме N₂ гетероциклов. Укажем, что по данным РСА такой тип протонирования реализуется в структуре гексафторосиликата 3,5-диамино-1,2,4триазолия (C₂H₆N₅)₂SiF₆ [16]. Склонность полученных солей к образованию гидратных форм объясняется, по-видимому, как

заметными H-акцепторными свойствами аниона SiF₆²⁻, так и наличием в составе катионов нескольких H-донорных/Hакцепторных центров, обеспечивающих внешнесферное закрепление молекул воды в структурах I–VII за счет H-связывания. Спектры ЯМР¹⁹F насыщенных водных

Спектры ЯМР¹⁹F насыщенных водных растворов **I–VII** однотипны и характерны для систем с динамическим фторным обменом: в спектрах в области химических сдвигов $\delta(^{19}\text{F}) -129,0 \div -130,5$ м.д. при комнатной температуре регистрируются два синглетных сигнала, которые коалесцируют при повышении температуры. Например, в случае спектра ЯМР¹⁹F соединения.

Таблица 1 – Волновые числа (см⁻¹) максимумов некоторых характеристических полос поглощения в ИК-спектрах гексафторосиликатов 1,2,4-триазолия

	-			
Соединение	ν(NH ⁺), ν(NH), ν(OH)	$\delta(NH_2), \delta(H_2O)$	v(SiF)	$\delta(SiF_2)$
$(L_1H)_2SiF_6\cdot H_2O$	3437 с.ш. 3338 пл. 3051 с.ш.	1649 пл. 1612 ср.	749 o.c.	482 с. 460 пл.
$(L_2H)_2SiF_6H_2O$	3322 с.ш. 3067 с.ш.	1633 cp. 1601 cp.	747 o.c.	482 ср. 440 пл. 427 пл.
$(L_3H)_2SiF_6H_2O$	3520 с.ш. 3296 с.ш. 3148 с.ш.	1638 c.	737 o.c.	484 ср. 459 сл.
$(L_4H)_2SiF_6\cdot 2H_2O$	3452 с.ш. 3096 с.ш.	1623 c.	748 o.c.	483 ср. 450 пл. 424 пл.
$(L_5H)_2SiF_6\cdot H_2O$	3235 с.ш. 3152 с.ш. 3025 пл.	1638 с. 1605 пл.	738 пл. 713 о.с.	478 пл. 467 с. 424 сл.
$(L_6H)_2SiF_6\cdot 2H_2O$	3469 с.ш. 3370 пл. 3108 с.	1638 c.	745 о.с. 721 пл.	481 c.
$(L_7H)_2SiF_6\cdot 3H_2O$	3472 с.ш. 3331 пл. 3087 с.	1633 c.	753 o.c. 717 c.	482 ср. 463 пл.

Примечание: о.с. – очень сильная, с. – сильная, сл. – слабая, ср. – средняя, пл. – плечо, ш. – широкая.

	\mathbf{A}	
	// T	DUDDOUD
1010111111111111111111111111111111111	/. + - I	DMASUMA
$a \circ a \circ$	· ·	prinsource

Соединение	N ₁	N ₂	N ₄	N_{Py}	N_{Ph}
L ₁	0,337	-0,267	-0,147	-0,089	0,045
L ₂	0,354	-0,251	-0,149	—	0,02
L ₃	0,105	-0,272	-0,154	_	0,054
L ₄	0,104	-0,273	-0,149	_	0,030
L ₅	0,114	-0,292	-0,159	—	0,003
L ₆	0,335	-0,270	-0,143	_	0,052
L ₇	0,337	-0,262	-0,137	_	0,063

Примечание: N_{ру} – атом азота в пиридиновом фрагменте L₁, N_{ph} – атом азота аминогруппы фенильного заместителя.

Вестник фармации №1 (71) 2016

IV более интенсивный сигнал при -130,29 м.д. соответствует аниону SiF₆²⁻, сигнал при -129,47 м.д. может быть отнесен к аниону [SiF₅(H₂O)]⁻ – продукту первой стадии гидролиза аниона SiF₆²⁻:

$$LH^{+} + H_2O \rightleftharpoons L + H_3O^{+}, \qquad (1)$$

$$SiF_6^{2-} + H_3O^+ \rightleftharpoons [SiF_5(H_2O)]^- + 2HF$$
 (2)

Результаты термогравиметрического анализа подтверждают гидратную при-

роду соединений I–VII, причем термолиз I–VII не сопровождается эффектом плавления. При температуре 79–141 °C реализуются процессы дегидратации (таблица 3); дальнейшее нагревание солей приводит к элиминированию в газовую фазу фтороводорода, тетрафторида кремния и продуктов разложения лигандов (эндо-эффекты при 130–330 °C) с последующей окислительной деструкцией органических лигандов (экзо-эффекты при 313–632 °C).

Таблица 3 – Т	Гемпературь	і дегидрата	ации ге	ксафторосиликат	ов 1,2,4-триазолия
	D 1 1		* * *	<u> </u>	

	Эффект, °С			Убыль массы, %			
Соединение	тип	t _o	t _M	найдено	вычисл.	Отнесение	
$(L_1H)_2SiF_6H_2O$	эндо	88	112	3,1	2,8	Удаление 1 моля H ₂ O	
$(L_2H)_2SiF_6H_2O$	эндо	87	111	4,5	2,4	_	
$(L_3H)_2SiF_6H_2O$	эндо	92	117	3,1	2,6	—	
$(L_4H)_2SiF_6\cdot 2H_2O$	эндо	79	111	5,9	4,7	Удаление 2 молей H ₂ O	
(L ₅ H) ₂ SiF ₆ ·H ₂ O	эндо	93	117	2,0	2,8	Удаление 1 моля H ₂ O	
$(L_6H)_2SiF_6\cdot 2H_2O$	эндо	86	112	5,9	5,1	Удаление 2 молей H_2O	
$(L_7H)_2SiF_6\cdot 3H_2O$	эндо эндо	84 _	111 141	11,2	7,5	Удаление 3 молей H_2O	

Следует отметить, что, согласно данным [17], для исходных производных 1,2,4-триазола ожидается проявление бактериостатической и бактерицидной активности – важных факторов повышения эффективности фторидсодержащих средств лечения и профилактики кариеса. Оценка кариеспротекторного действия гексафторосиликатов 1,2,4-триазолия будет являться предметом наших дальнейших исследований.

ЗАКЛЮЧЕНИЕ

1. Путем взаимодействия метанольных растворов 3,5-дизамещенных производных 1,2,4-триазола с раствором кремнефтороводородной кислоты синтезированы гидратные формы гексафторосиликатов состава (LH)₂SiF₆·nH₂O (n = 1-3), охарактеризованные с использованием методов ИК-, ЯМР ¹⁹F-спектроскопии, массспектрометрии и термогравиметрического анализа.

2. Вероятным центром протонирования в катионах солей является атом азота пиридинового типа, что согласуется с результатами расчетов эффективных зарядов на атомах гетероциклических оснований полуэмпирическим методом PM3. 3. Согласно данным спектроскопии ЯМР ¹⁹F, в водных растворах гексафторосиликаты подвергаются гидролизу с образованием аквапентафторосиликатного аниона [SiF₅(H₂O)]⁻.

4. Гексафторосиликаты 1,2,4-триазолия представляют интерес в качестве объектов дальнейшего изучения как потенциальные кариеспротекторные агенты, обладающие антибактериальной активностью.

SUMMARY

V. O. Gelmboldt, V. Yu. Anisimov,

I. O. Shishkin, R. E. Khoma,

K. P. Shabelnik, S. I. Kovalenko

HEXAFLUOROSILICATES OF

3,5-DISUBSTITUTED 1,2,4-TRIAZOLIUM CATIONS AS POTENTIAL

CARIES-PREVENTIVE AGENTS

In present communication we are describing some results of synthesis and physico-chemical investigations of seven new salts – 3,5-disubstituted-1,2,4-triazo-lium hexafluorosilicates with the composition $(LH)_2SiF_6\cdot nH_2O$ (L₁ = 3-pyridine-3-il-5-(2'-aminophenyl)-1H-1,2,4-triazole, n = 1; L₂ = 3-benzofuran-2-il-5-(2'-amino-3'-methyl-phenyl)-1H-1,2,4-triazole, n = 1;

 $L_3 = 5-(2'-amino-5'- chloro-phenyl)-3-fu$ ran-3-il-1H-1,2,4-triazole, n = 1; $L_4 = 3$ -adamantane-1-il-5-(2'-amino-phenyl)-1H-1,2,4-triazole, n = 2; $L_5 = 5-(2'-amino-$ 3'-methyl-phenyl)-3-furan-3-il-1H-1,2,4triazole, n = 1; $L_c = 3$ -thiophene-3-il-5-(2'amino-3'-fluoro-phenyl)-1H-1,2,4-triazole, n = 2; L₇ = 3-thiophene-2-il-5-(2'-amino-3'-fluoro-phenyl)-1H-1,2,4-triazole, n = 3) for their potential use as caries-preventive agents. Hexafluorosilicates have been isolated as products of interaction of heterocyclic bases L in methanol solution with H_2SiF_6 (45%) in mole ratio 1 : 3. Characteristics of IR spectra of the 1,2,4-triazolium hexafluorosilicates may indicate the participation of groups NH, NH⁺, NH₂ and H₂O molecules in H-bonds NH·F, OH·F with fluorine atoms of hexafluorosilicate anions. Multiplied type vibration bands v(SiF) and δ (SiF₂) (identified in characteristic spectral regions at 753-713 and 484–424 cm⁻¹, respectively) reflect the distortion of the octahedral geometry of the SiF $_{6}^{2-}$ anion in salts due to interionic H-bonds. The protonation of the heterocyclic N₂-atom of L in salts structures is confirmed by the results of PM3 calculations. The thermolysis of hexafluorosilicates is accompanied by a stage of elimination in a gas phase of water molecules at 79–141 °C. In aqueous solutions hexafluorosilicates are subjected to hydrolytic transformations with the formation of [SiF₅(H₂O)]⁻ anion. The study of biological activity of these compounds as caries-preventive agents is the subject of further investigations.

Keywords: hexafluorosilicates, 1,2,4-triazolium cations, hydrolysis, caries-preventive agents.

ЛИТЕРАТУРА

1. Ammonium hexafluorosilicate elicits calcium phosphate precipitation and shows continuous dentin tubule occlusion / T. Suge [et al.] // Dent. Mater. – 2008. – V. 24, № 2. – P. 192–198.

2. Antibacterial activity of ammonium hexafluorosilicate solution with antimicrobial agents for the prevention of dentine caries / S. Shibata [et al.] // Am. J. Dent. – 2012. – V. 25, $N_{\rm P}$ 1. – P. 31–34.

3. Suge, T. Effects of ammonium hexafluorosilicate concentration on crystallinity of hydroxyapatite powder and enamel / T. Suge, T. Matsuo//Key. Eng. Mater. – 2013. – V. 529–530. – P. 526–530.

4. Effects of ammonium hexafluorosilicate application on demineralization enamel and dentin of primary teeth / Y. Hosoya [et al.] // J. Oral Science. – 2012. – V. 54, N 3. – P. 267–272.

5. Effect of ammonium hexafluorosilicate application for arresting caries treatment on demineralized primary tooth enamel / Y. Hosoya [et al.] // J. Oral Science. -2013. - V.55, $N \ge 2. - P.115-121.$

6. Rosenblatt, A. Silver diamine fluoride: a caries "silver-fluoride bullet" / A. Rosenblatt, T. C. M. Stamford, R. Niederman // J. Dent. Res. – 2009. – V. 88, № 2. – P. 116–125.

7. Drug-induced discoloration of teeth: an updated review / A. Kumar [et al.] // Clinical Pediatrics. -2012. - V.51, No 2. -P. 181–185.

8. Preparation, structure and properties of pyridinium/bipyridinium hexafluorosilicates / V. O. Gelmboldt [et al.] // J. Fluorine Chem. – 2014. – V. 160, № 4. – P. 57–63.

9. Gelmboldt, V. O. Hexafluorosilicates with antibacterial active guanidine containing cations / V. O. Gelmboldt, V. Yu. Anisimov, O. V. Prodan // News of Pharmacy. – 2014. – № 3(79). – P. 42–45.

10. Gelmboldt, V. O. Synthesis and characterization of cetylpyridinium hexafluorosilicate as new potential caries protecting agent / V. O. Gelmboldt, O. V. Prodan, V. Yu. Anisimov // Am. J. PharmTech. Res. – 2014. – V. 4, N° 6. – P. 513–521.

11. Экспериментальная оценка кариеспрофилактической эффективности «ониевых» гексафторосиликатов / В. В. Лепский [и др.] // Вісник стоматології. – 2015. – № 2. – С. 10–13.

12. Коваленко, С. І. Синтез та нуклеофільне розщеплення 2-R-[1,2,4] триазоло[1,5-с]хіназолінів / С. І. Коваленко, В. О. Волошина, О. В. Карпенко // Журнал органічної та фармацевтичної хімії. – 2010. – Т. 8, Випуск 2(30). – С. 48–56.

13. Климова, В. А. Основные микрометоды анализа органических соединений / В. А. Климова. – М.: Химия, 1975. – 224 с.

14. Мышляева, Л. В. Аналитическая химия кремния / Л. В. Мышляева, В. В. Краснощеков. – М.: Наука, 1972. – 212 с.

15. [Электронный ресурс]: http://hypercube.com.

16. Synthesis, crystal structure, IR-spectral data and some properties of 3,5-diamino-1,2,4-triazolium tetrafluoroborate and hexafluorosilicate / E. A. Goreshnik [et al.] // J. Fluorine Chem. -2011. - V. 132, No 2. -P. 138-142.

17. Протимікробна та протигрибкова активність похідних хіназоліну, тріазолу та їх конденсованих аналогів / С. В. Холодняк [та ін.] // Клінічна фармація, фармакотерапія та медична стандартизація. – 2013. – № 3–4(20–21). – С. 36–42.

Адрес для корреспонденции:

65082, Украина, г. Одесса, Валиховский пер., 2, Одесский национальный медицинский университет, кафедра фармацевтической химии, тел.: +38 (048) 712-14-93, e-mail: vgelmboldt@te.net.ua, Гельмбольдт В. О.

Поступила 19.10.2015 г.