Журнал общей химии. 2015. Т. 85. Вып. 10

УДК 546.224-31:547.388.2:547.281.1

МЕТОД СИНТЕЗА, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ N-(*mpem*-БУТИЛ)АМИНОМЕТАНСУЛЬФОКИСЛОТЫ

© Р. Е. Хома,^{1, 2•} В. О. Гельмбольдт,³ А. А. Эннан,¹ В. Н. Баумер,^{4, 5} А. Н. Пузан⁴

¹Физико-химический институт защиты окружающей среды и человека Министерства образования и науки и Национальной академии наук Украины Украина, 65082, Одесса, ул. Преображенская, 3; e-mail: rek@onu.edu.ua ²Одесский национальный университет имени И. И. Мечникова ³Одесский национальный медицинский университет ⁴Институт монокристаллов Национальной академии наук Украины, Харьков ⁵Харьковский национальный университет имени В. Н. Каразина

Предложен новый метод синтеза N-(трет-бутил)аминометансульфокислоты в системе SO₂--(CH₃)₃CNH₂--CH₂O-H₂O. Соединение [(CH₃)₃C]NHCH₂SO₃H охарактеризовано методами PCA, ИК спектроскопии и масс-спектрометрии.

Ключевые слова: оксид серы(IV), параформ, первичный алкиламин, конденсация.

Соединения цвиттер-ионного строения, в частности аминоалкансульфокислоты, их производные и соли [1–4] являются перспективными компонентами буферных растворов [1, 2], широко используемых для контроля pH среды в биологических исследованиях. Кроме того, указанные соединения представляют интерес в качестве биологически активных веществ с различными типами фармакологической активности [4, 5].

Ранее нами был предложен [6] оригинальный метод синтеза N-производных аминометансульфокислоты на примере взаимодействия оксида серы(IV) с водным раствором смеси моноэтаноламина и формальдегида, приводящего к N-(гидроксиэтил)аминометансульфокислоте.

В продолжение работы [6] была предпринята попытка получить одно из N-производных аминометансульфокислоты с использованием в реакции *трет*-бутиламина. В настоящем сообщении описаны метод синтеза и результаты изучения строения N-(*трет*-бутил)аминометансульфокислоты.

Синтез проводили взаимодействием оксида серы(IV) с водным раствором смеси *трет*-бутиламина и формальдегида и получали N-(*трет*бутил)аминометансульфокислоту с количественным выходом. Ее состав и строение доказано методами масс-спектрометрии, элементного анализа, ИК и ЯМР спектроскопии, а также данными рентгеноструктурного исследования.

Данные ИК спектроскопии полученного соединения указывают на реализацию цвиттер-ионной структуры, как и в ранее изученных аналогах [6, 7].

На рис. 1 показан общий вид молекулы N-(*трет*-бутил)аминометансульфокислоты; длины связей и валентные углы приведены в табл. 1.

При упаковке базисных единиц в кристаллической структуре образуются водородные связи N–H…О между аммонийной группой одной молекулы и кислородным атомом сульфогруппы соседней молекулы, связанной с первой винтовой осью. Такие водородные связи приводят к образованию

Поступило в Редакцию 2 апреля 2015 г.

1650

Метод синтеза, кристаллическая структура и спектральные характеристики N-(трет-бутил)аминометансульфокислоты 1651

Рис. 1. Общий вид молекулы N-(*трет*-бутил)аминометансульфокислоты (уровень вероятности – 50%).

Рис. 2. Кристаллическая упаковка и система водородных связей в молекуле N-(*трет*-бутил)аминометансульфокислоты. Водородные связи изображены штриховыми линиями.

Таблица 1

Длины связей и валентные углы в структуре N-(*трет*-бутил)аминометансульфокислоты

Связь	<i>d</i> , Å	Угол	ω, град	Угол	ω, град
S^1 – O^2	1.421(3)	$O^2S^1O^3$	113.98(18)	$N^1C^5S^1$	111.4(2)
S^1-O^3	1.453(3)	$O^2S^1O^1$	114.63(19)	$C^3C^1N^1$	109.1(3)
S^1 – O^1	1.459(3)	$O^3S^1O^1$	111.14(16)	$C^{3}C^{1}C^{2}$	113.0(3)
$S^{1}-C^{5}$	1.761(4)	$O^2S^1C^5$	104.93(18)	$N^1C^1C^2$	108.0(3)
$N^{1}-C^{5}$	1.488(5)	$O^3S^1C^5$	106.29(18)	$C^{3}C^{1}C^{4}$	111.0(4)
$N^1 - C^1$	1.521(5)	$O^1S^1C^5$	104.87(18)	$N^1C^1C^4$	105.3(3)
$C^1 - C^3$	1.513(5)	$C^5N^1C^1$	117.3(3)	$C^2C^1C^4$	110.2(3)
$C^{1}\!\!-\!\!C^{2}$	1.524(5)				
$C^1 - C^4$	1.532(5)				

Таблица 2

Характеристики водородных связей D-H···A в молекуле N-(*трет*-бутил)аминометансульфокислоты

D–Н…А	Расстояние, Å d(D-H) d(H···A) d		e, Å d	Угол DHA,	Координаты атома А
$N^1 H^{1A} \cdots O$	0.82(3)	2.03(4)	(D···A) 2.829(4)	166(4)	-x + 1/2, y + 1/2,
$\underset{3}{\overset{N^{1}H^{1B}\cdots O}{\overset{3}}}$	0.93(3)	1.93(3)	2.862(4)	175(3)	-2 + 1/2 -x + 1/2, y - 1/2, -z + 1/2

Экспериментальная часть

В исследованиях использовали коммерческий оксид серы(IV) после предварительной очистки и осушки согласно методике [9]. трет-Бутиламин и параформ классификации Ч - коммерческие реактивы – использовали без предварительной очистки.

бесконечных цепей молекул, вытянутых вдоль кристаллографической оси [010] (рис. 2). Между соседними цепями водородных связей нет, наблюдаются только укороченные контакты С-Н...О. Характеристики водородных связей приведены в Таким образом, на примере взаимодействия ком-

ИК спектры регистрировали на спектрофотометре Spectrum BX II FT-IR System (Perkin-Elmer) в области 4000-350 см⁻¹; образцы готовили в виде таблеток с КВг. Масс-спектры снимали на приборе МХ-1321 (прямой ввод образца в источник, энергия ионизирующих электронов - 70 эВ). Анализ на углерод, водород и азот проводили с использованием элементного CHN-анализатора; серу определяли по

изводных аминометансульфокислоты путем конденсации, сопровождаемой окислением S(IV)→ \rightarrow S(VI).

понентов системы SO₂-(CH₃)₃CNH₂-CH₂O-H₂O

подтверждена возможность прямого синтеза N-про-

табл. 2.

Шёнигеру.

Рентгеноструктурный анализ выполняли на дифрактометре Oxford Diffraction (Мо K_{a} -излучение, 1652

графитовый монохроматор, CCD-детектор Sapphire-3). Расшифровку и уточнение структур проводили с использованием комплекса программ SHELX-97 [8]. Атомы водорода найдены из разностного синтеза, после чего Н-атомы метильных и метиленовых групп уточняли по модели наездника. Водородные атомы, участвующие в образовании водородных связей, уточняли в изотропном приближении. Основные кристаллографические данные и результаты уточнения кристалла: C₅H₁₃NO₃S, кристалл моноклинный, *M* 167.22, *P*2₁/*n*, *a* 11.528(4), *b* 6.4185(16), с 12.461(5) Å; β 116.39(5)°, V 825.9(5) Å³ при 293(2) К, Z 4, d_{выч} 1.345 г/см³, F₀₀₀ 360, кристалл 0.40×0.20×0.02 мм, μ 0.346 мм⁻¹, λ(Мо*K*_α) 0.71073 Å, коэффициенты пропускания T_{\min}/T_{\max} 0.8740/0.9931; $-13 \le h \le 13, -7 \le k \le 7, -14 \le l \le 13, \omega$ -сканирование при $3.66 \le \theta \le 24.98^{\circ}$; 4399 измеренных отражений, из которых 1331 независимых (R_{int} 0.1657), и 625 наблюдаемых с $I_{hkl} > 2y(I)$, полнота охвата 91.0%; полноматричное уточнение 100 параметров по F^2 : окончательные показатели достоверности по наблюдаемым отражениям: $R_{\rm F}$ 0.0519, wR^2 0.0936 ($R_{\rm F}$ $0.1447, wR^2 0.1336$ по всем независимым отражениям), S 0.972, $\Delta \rho_{\text{min}} / \Delta \rho_{\text{max}} = -0.199 / 0.211 \ e/\text{Å}^3$

N-(*трет***-Бутил)аминометансульфокислота.** К раствору 0.05 моля *трет*-бутиламина в 20 мл воды добавляли параформ в эквимольном соотношении при охлаждении ($t \le 10^{\circ}$ С) и оставляли на 24 ч. Через образовавшуюся гетерогенную смесь барботировали SO₂ до pH ≤ 1.0 с последующим выдерживанием реакционной смеси при комнатной температуре до полного испарения воды. Выход 8.35 г (~100%), кристаллическое белое вещество, т. пл. 184–186°С. ИК спектр, v, см⁻¹: 3240 пл (NH), 3020 с, 2997 с, 2845 ср, 2816 с (NH, CH); 2682 ср, 2583 ср, 2455 ср, 2362 ср (N⁺H), 1624 ср [δ (N⁺H₂)], 1487 ср, 1455 ср, 1435 пл, 1408 ср, 1382 ср, 1324 ср, 1286 ср, 1266 ср; 1245 с, 1234 с (SO₂), 1199 пл, 1164 с; 1062 с, 1012 ср (SO₂); 878 сл, 852 сл, 800 ср, 741 ср, 605

Р. Е. Хома и др.

с; 549 ср (S–O), 520 ср, 505 пл, 472 ср, 444 ср, 418 сл. Масс-спектр (ЭИ), *m/z* (*I*_{отн}, %): 91 (10), 85 (13), 70 (98), 64 (87) [SO₂]⁺, 59 (50), 57 (100) [(CH₃)₃C]⁺, 48 (38), 41 (94), 38 (27), 30 (29). Найдено, %: С 35.20; H 8.31; N 8.50; S 20.05. C₅H₁₃NO₃S. Вычислено, %: С 35.91; H 7.84; N 8.38; S 19.17. *M* 167.23.

Список литературы

- [1] Good N.E., Winget G.D., Winter W., Connolly T.N., Izawa S., Singh R.M.M. // Biochemistry. 1966. Vol 5. N 2. P. 467. DOI: 10.1021/bi00866a011
- [2] Good N.E., Izawa S. // Methods Enzymol. 1972. Vol. 24. P. 53. DOI:10.1016/0076-6879(72)24054-x.
- [3] Yu Q., Kandegedara A., Xu Y., Rorabacher D.B. // Analyt. Biochem. 1997. Vol. 253. N 1. P. 50. DOI:10.1006/abio.1997. 2349.
- [4] Long R.D., Hilliard Jr. N.P., Chhatre S.A., Timofeeva T.V., Yakovenko A.A., Dei D.K., Mensah E.A. // Beilstein J. Org. Chem. 2010. Vol. 6. N 31.DOI: 10.3762/bjoc.6.31.
- [5] Badeev Yu.V., Korobkova V.D., Ivanov V.B., Pozdeev O.K., Gil'manova G.Kh., Batyeva E.S., Andreev S.V. // Pharm. Chem. J. 1991.Vol. 25. N 4. P. 272.DOI: 10.1007/BF00772113.
- [6] Хома Р.Е., Гельмбольдт В.О., Шишкин О.В., Баумер В.Н., Короева Л.В. // ЖОХ. 2013. Т. 83. Вып. 5. С. 834; Khoma R.E., Gel'mbol'dt V.O., Shishkin O.V., Baumer V.N., Koroeva L.V. // Russ. J. Gen. Chem. 2013. Vol. 83. N 5. P. 834. DOI: 10.1134/S1070363213050149.
- [7] Хома Р.Е., Шестака А.А., Шишкин О.В., Баумер В.Н., Брусиловский Ю.Э., Короева Л.В., Эннан А.А., Гельмбольдт В.О. // ЖОХ. 2011. Т. 81. Вып. 3. С. 525; Khoma R.E., Shestaka A.A., Shishkin O.V., Baumer V.N., Brusilovskii Yu.E., Koroeva L.V., Ennan A.A., Gel'mbol'dt V.O. // Russ. J. Gen. Chem. 2011. Vol. 81. N 3. P. 620. DOI: 10.1134/ S1070363211030352.
- [8] Sheldrick G.M. // Acta Crystallogr. (A). 2008. Vol. 64. N 1.
 P. 112. DOI: 10.1107/S0108767307043930.
- [9] Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. С. 438.