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ABSTRACT 

The new aggregate data analyses revealed the earlier missing role played by the 

cerebellum long-term electrical stimulation in the absence epilepsy. 

Neurophysiologic data gained by authors favor that cerebellar serial deep brain 

stimulation (DBS) (100 Hz) causes the transformation of penicillin-induced 

cortical focal discharges into prolonged 3,5-3,75 sec oscillations resembling spike-

wave discharges (SWD) in cats. Such SWDs were not organized in the form of 

bursts and persisted continuously after stimulation. Therefore the appearance of 

prolonged periods of SWD is regarded as a tonic cerebellar influence upon 
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pacemaker of SWD and might be caused by the long-lasting DBS-induced increase 

of GABA-ergic extrasynaptic inhibition in forebrain networks. At the same time, 

cerebellar DBS high-frequency (100 Hz) suppressed bursts of SWD observed 

during the phase of stimulation. Different types of cerebellar DBS upon epileptic 

activity emphasized the absence seizure facilitation discussed with the reviewed 

data on optogenetic stimulation, neuronal activity of cerebellar structures, and 

functional magnetic resonance imaging data. 

 

Key words: absence epilepsy, spike-wave discharges, cerebellum, deep brain 

stimulation. 

 

 

 

Abbreviations: AS – absence seizures; BOLD – blood-oxygen-level-dependent 

(response); CAE – childhood absence epilepsy; CTC – cortico-thalamo-cortical 

(network); DBS – deep brain stimulation; EEG – electroencephalogram; 

eGABAAR – extrasynaptic gamma aminobutyric acid type A receptors; ES – 

electrical stimulation; GHB – γ-hydroxybutyric acid (butyrolactone); fMRI –

 functional magnetic resonance imaging; GABA γ-aminobutyric acid; PC – 

Purkinje cells; PPC- primary positive component;  RT- reticular (thalamic) 

nucleus; SWD – spike-wave discharges; TMS – transcranial magnetic stimulation. 

[18F]FDG-PET – fludeoxyglucose (18F) – positron emission tomography. 
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1.INTRODUCTION 

 

Childhood absence epilepsy (CAE) represents a benign form of generalized 

epilepsy, which comprises 10-15% of all childhood epilepsies [1, 2, 3]. Both 

experimental and clinical absence seizures (AS) represent minimal visible clinical 

symptoms and typical and profound EEG deterioration [4-8].  

 

Main pathogenetic peculiarities of spike-wave discharges (SWD) as a biomarker of 

AS confined to hyperexcitation within the cortico-thalamo-cortical (CTC) network 

[6-9]. Intensively developed investigations of genetic forms of absence seizures 

performed during the last decades [10-14]. Calcium channel deteriorations may 

underlay such hyperactive state of neurons within the CTC networks due to an 

α(1A) voltage-sensitive calcium channel gene mutation – as established in tottering 

(tg) and tg(la) mice [14, 15, 16, 17]. 

 

Recent data proved that a pathological enhancement of GABAergic signaling 

within a thalamocortical network is necessary and sufficient for nonconvulsive AS 

development [18-25]. The overwhelming inhibitory GABA-ergic effect is in 

charge of absence SWD promotion [18, 19, 26]. It might be assumed that increased 

activation of extrasynaptic GABAA receptors and augmented tonic GABAA 

inhibition in thalamocortical neurons are in charge of such effect [20]. 

 

Continuously developed absence seizures in rats induced via gamma-butyrolactone 

(GHB) (200 mg/kg, i.p.) administration is characterized by a lower frequency of 

discharges (2,64- 3,59 Hz), which are not organized as bursts [24, 27]. The 

enhanced GABAergic inhibition serves as a basic conception of AS manifestations, 

and compounds which intensified it recognized as proabsence ones [25]. The 

reticular thalamic nucleus (RT) 's leading role in the GABA-ergic suppression of 

specific thalamic nuclei was strengthened last time [28].  Such data were in line 
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with the two-phase effects of vigabatrin upon SWD [29] and with the suppression 

of SWD caused by DBS of RT [30]. 

 

Despite relatively good pharmacological control of CAE manifestations, resistance 

to treatment is actual [31-34]. Searching for alternative therapy of not-responsive 

AS targets for DBS proved promising [35]. Among others, thalamic structures are 

the first line of such targets [30, 35, 36], while the cerebellum is almost beyond the 

scope of interest.  

 

Meanwhile, considering the statement on GABA role in AS, the question arises if 

the cerebellum could be a source of additional strengthening of GABA-ergic 

mechanisms provoking AS?  

 

To answer such a question means observing the evolution of epileptic activity 

induced as a result of GABA inhibition disturbance caused by penicillin – 

antagonist of CABAA receptors under conditions of cerebellar ES. Penicillin – 

induced activity is recognized as closely resembling SWD, and systemic 

administration of epileptogen to feline cats is a hallmark of such resemblance [37]. 

Nevertheless, foci induced via application of relatively low dosage of penicillin 

solution upon brain cortex start their activity from purely negative spikes and 

demonstrate step by step development of particular discharge (spike) component – 

such as primary slow-wave, positive component (PPC) following spike [38]. Such 

a “minor” characteristic of epileptic discharges might be informative for 

antiseizure action of antiepileptic drugs [38, 39]. We were interested in two 

phenomena, which are underlying with GABAergic mechanisms. Namely, GABA-

mediated inhibition contributes to the profound postsynaptic inhibitory potential of 

substantial length in penicillin-induced foci, which underlay slow-wave genesis 

[20-22, 26, 37]. The genesis of PPC reflects local inhibitory (“surround 

inhibition”) [40-42] barrier activity, which does not permit to expand epileptic 

activity along with the neural tissue.  
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Hence, our investigation aimed to observe the specificity evolution of interictal 

penicillin-induced cortical focal activity, emphasizing slow-wave characteristics, 

and spikes PPC under paleocerebellar electrical stimulation (ES). 

 

2. MATERIAL AND METHODS  

 

The experiments performed on 15 male cats, weighing 2,5-3,5 kg under acute 

experimental conditions. Procedures involving animals and their care were 

conducted according to University guidelines that comply with international laws 

and policies [European Community Council Directive 86/609, OJ L 358, I, 

December 12, 1987; National Institute of Health Guide for Care and Use of 

Laboratory Animals, US National Research Council, 1996]. 

 

All animals underwent tracheostomy and skull trepanation performed under ether 

anesthesia. Points of pressure in a stereotaxic frame and all soft tissue dissection 

zones were infiltrated with 0,5% of novocaine solution, and this procedure 

repeated every 2,0 h. Tubocurarine ("Orion," Finlandia, 0,2 mg/kg, i.v.) was 

injected, and after that, the cats were artificially ventilated. Stimulative nichrome 

bipolar electrodes (outer diameter 0,12 mm, interelectrode distance 0,2 mm) were 

inserted to the paleocerebellum (declive, pyramis) under visual control and fixed to 

the skull with quick-drying dental cement. 

 

The dura mater was dissected 2,0-2,5 h from the moment of the cessation of ether 

anesthesia, and filter paper (2,0x 2,0 mm) was soaked with ex tempore prepared 

sodium benzylpenicillin solution (16,000 IU/ml) applied to the posterior sigmoidal 

gyrus. The indifferent electrode was then placed in nasal bones. Monopolar EEG 

registration performed using electroencephalograph 4- EEG-3 type (FSU). 

Electrical stimulations (ES) of the cerebellum were done with an electrostimulator 

ESU-1 (FSU) (100- 300 Hz, 0,25 ms, 150-250 µA, duration of trial- 3-7 s). The 
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interval between ES was not less than three minutes. Only histologically controlled 

locations of electrodes were included in observation. Control cats were false-

stimulated [43]. 

 

3.RESULTS 

 

Fifteen to twenty min after the moment of application of the epileptogen upon the 

cat’s cortex (posterior sigmoidal gyrus), single spikes with an amplitude of 1,5-2,2 

mV and the frequency of generated discharges was 30 to 50 per min (Fig 1, A). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Effects of paleocerebellar ES upon 
penicillin-induced foci in brain cortex of 
myorelaxed and artificially ventilated cats 
A- 17,5 min after  the moment of application 
of penicillin sodium salt (16,000 IU/ml) to the 
posterior sigmoid gyrus;  
B-1,0 min after  the cessation of 2-d ES and 
5,5 min after A; 
C-5th ES; D-, E- 1,0 min after the moment of 
7th ES; 
With an arrow, a small amplitude spike 
preceding a sharp wave marked. 
Parameters of ES: 100 Hz, 0,25 ms, 250 mcA 
(period of ES marked with a solid line at C). 

Fig. 2 Effect of penicillin application in the 
zone with sharp spindle-like waves generation. 
A- 1,5 min from the moment of 8-th ES of 
paleocerebellum; B- 0,5 min, C- 2,5 min, and 
D- 5,5 min from the moment of the new 
application of benzylpenicillin  (16,000 
IU/min). 
(Adopted from [43]) 
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Not regular and small PPC was registered at this period in control observations 

with false stimulations (as an example, look at fragment A, which demonstrates the 

period before ES start). More regular PPC with amplitude than 25% of the spike's 

total magnitude followed with slow wave appeared in the next 15,0 – 20,0 min in 

the control group. Meanwhile, the development of pronounced (up to 50% of the 

total magnitude of discharge) PPC of discharges followed with pronounced – up to 

0,6 mV slow wave was induced in 1-3 ES (Fig. 1, B). This time, the discharge 

amplitude diminished to 1,3-1,8 mV, while the frequency of generation of 

discharges reduced to 15 - 45 per min. During the next 2-4 ESs, the suppression of 

spikes along with the appearance of slightly distorted sinusoidal waves (3,5-

3,75/sec) with an amplitude of 0,45-0,80 mV was registered (Fig 1, C). Consequent 

2- 4 ES were enough to suppress all spiking activity. This effect was observed in 5 

out of 7 experiments,  and in all of them, spikes were substituted by relatively 

regular (3,5-3,75/sec) sinusoidal waveforms with a constant amplitude of 0,6 to 0,9 

mV (Fig. 1, D, E). Not regularly, small amplitude spikes preceding wave were 

identified (look at E, the arrow pointed). It should stress that any SWD appearance 

was seen in control observation - false- stimulated cats with spontaneous declining 

focal activity. 

 

New local application of penicillin (16,000 IU/ml) in the zone in which sinusoidal 

waves were present (Fig. 2, A) caused an initial decrease of their amplitude (Fig. 2, 

B) with the appearance of spikes in 1,0-3,0 min (Fig. 2, C). In the next 1,0-4,5 min, 

spikes' amplitude reached their maximal value (Fig. 2, D).  Remarkably the PPC 

was absent in newly appeared discharges. 

 

3.DISCUSSION  

 

Hence, delivered results revealed the precipitation of not-in burst organized 

prolonged slow-wave activity with the frequency of 3,5-3,75 Hz in the zone of 
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cortical penicillin-induced foci. Such activity is close to such one characteristic for 

absence SWD and induced via paleocerebellum ES.  

 

As far as cortical administration of GABAA antagonists (penicillin) precipitated 

seizure activity with SW pattern [44, 45], the spontaneous occurrence of SWD was 

expected in the course of the natural decline of penicillin-induced foci activity. 

Such type of evolution did not take place in our observations but provoked with 

paleocerebellar ES. Obtained results correspond with the data on the precipitation 

of SWD (3/sec) in the rat brain cortex on the focal penicillin-induced foci model 

caused by paleocerebellar ES [47]. They correspond also with the theory on the 

leading cortical role in SWD generation [9, 46] and with the general conception on 

the role of GABA-ergic mechanisms in SWD precipitation.  

 

Gained data permitted to state the next properties of described regular slow waves:  

-waves rows are restricted to the zone of primary penicillin application and 

did not impact intact cortical zones; 

-waves shape is asymmetrical with a sharp increase and slow decline of 

amplitude; 

-suppression of slow waves caused by additional penicillin application – the 

fact in favor of their genesis via activation of CABA-dependent mechanisms of 

their appearance. Vice versa, the activation of local inhibition caused by cerebellar 

ES is also supported by the induction of pronounced PPC as far as its development 

reflects the state of local surround inhibition [40-42]. Precipitation of pronounced 

PPC was an immediate result of first-second stimulations. 

 

Hence, it might be supposed that influences coming to the forebrain from 

stimulated paleocerebellum can precipitate EEG signs of AS in the cortical  

GABA-A mechanism zone disturbed with local penicillin application. This effect 

of ES is promoted by the increase of GABA-ergic inhibition in target neuronal 

chains as far as investigated components of seizure discharged (slow wave, PPC) 
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reflect the heightened state of GABA inhibition and developed in parallel with the 

suppression of spike discharges [43, 47, 48]. 

 

The involvement of GABA strengthened inhibition in observed effects of 

transformation of epileptic activity is supported with clinical magnetic resonance 

spectroscopy data revealing the heightening of GABA-ergic mechanisms in the 

brain caused by cerebellar transcranial magnetic stimulation (TMS) [49, 50]. The 

authors established that cerebellar TMS followed by an average increase of EEG 

synchronization in the theta–bandwidth, accompanied by the rise in regional 

GABA level in the prefrontal cortex [50]. 

 

Existing literature data coming from different methodical approaches to the 

clarifying cerebellar role in AS are in line with the gained data: 

 

3.1.Tonic onic and phasic effects of cerebellar ES  

 

The prolonged poststimulative character of SWD provocation is in favor of the 

tonic nature of AS facilitation, which might realize via extrasynaptic δ-containing 

GABAA receptors [51] located both in the thalamus [52] and in the brain cortex 

[53, 54]. It should stress that extrasynaptic tonic inhibition is necessary to induce 

AS. Thus, knockdown of eGABAAR by genetic methods prevented precipitation 

of AS both in the GHB model and spontaneous AS in GAERs rats [19]. GABA 

elaborated in cerebrospinal fluid in the course of high-frequency (200 Hz) ES of 

the cerebellum [55, 56] might also contribute to eGABAAR activation.  

 

Another mechanism on such stimulation realized via the strengthening of GABA 

synthesis from glutamate elaborated from glutamatergic cerebellar efferents and 

accumulated in thalamic targets in the course of serial cerebellar ES has been 

assumed by Gornati SV and Hoebeek FE [see 57].   
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Opposite to tonic, phasic influences upon the CTC network are realized 

transsynaptically [58]. Hence, the disruption of the CTC network via prolonged 

depolarization of thalamic neurons and dysfacilitation of epileptogenesis, as a 

result, is recognized as the most probable antiseizure role played by cerebellar 

nuclei in SWD suppression [59]. Pharmacological (gabazine) local stimulation of 

cerebellar nuclei neuronal activity followed with SWD suppression favors the 

proposed conception [60]. 

 

Different effects of phasic and tonic effects of cerebellar ES upon SWD are in 

correspondence with suppressive action of intrathalamic administration of 

glutamate receptors agonists upon SWD, while similar administration of GABA-

ergic compounds (gamma-vinil-GABA, tiagabin) stimulate SWD generation in rats 

with genetic forms of AS [61, 62].  

 

3.2. Imaging of absence seizure network  

 

It is challenging to apply positron emission tomography (PET) to investigate ictal 

phenomena and their interpretation [63]. That is why the case of absence status 

epilepticus is of particular interest in clarifying its pathogenesis with [18F]FDG-

PET method [64]. The authors concluded that thalamus activation, 

hypometabolism in frontal, parietal, and posterior cingulate cortices, and 

hypermetabolism in the cerebellum favor the maintenance of absence status (3-4 

Hz rhythmic delta waves in EEG). Earlier, [65] delivered similar data based on 

[18F]FDG-PET in a patient with absence status. Namely, the authors pointed to 

bilateral thalamic hypermetabolism and frontal cortex hypometabolism. BOLD 

data on GSWD activity in patients with juvenile myoclonic epilepsy revealed the 

net cerebellum involvement with the negative relationships between the thalamus, 

cerebellum, frontal and sensorimotor-related areas [66-68]. 
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Using EEG/fMRI, the source of generalized SWDs determined in patients who 

suffered from resistant idiopathic generalized epilepsies [69]. The authors analyzed 

36 AS and revealed that peak blood-oxygen-level-dependent (BOLD) response 

was reached maximally in six seconds from the AS EEG onset with a simultaneous 

time-schedule for the temporal lobe. The stable peak of BOLD response in the 

cerebellum registered one sec after the thalamus's peak favors that ictal AS induce 

disturbances encompassing the cerebellum. Following the classical statement, 

seizures arise from the cerebral cortex, spreading to other structures, including the 

cerebellum [70]. Nevertheless, cerebellar structures' primary role in seizures 

generation is also suspected [71] and disclosed on pentylenetetrazol-modeled 

seizures in Zebrafish [72]. 

 

3.3. Impulse activity of cerebellar cells in seizure suppression 

 

PCs are activated during the occurrence of SWD, as well. High voltage spindles, 

recorded epidurally from the rat sensorimotor neocortex, correlated with single or 

multiple unit activity in the cerebellar cortex and deep cerebellar nuclei [73]. Later 

on, [74] reported that slow synchronized oscillations in the neocortex drive slow 

oscillations in the cerebellar cortex. Specific changes of extracellular spike trains 

of cerebellar nuclei of Cacnala tg mice, another genetic absence model, 

precipitated in the course of SWD appearance, favor cerebellum involvement [75].  

 

Up to 26% PC demonstrated an increase of complex spike activity and rhythmicity 

during generalized SWDs in homozygous tottering mice [76]. Those effects are 

better pronounced in the cerebellar cortex's lateral parts, which receive inferior 

olive inputs. Interestingly, the bilateral inferior olive lesion was produced by 

systemic administration of the neurotoxin 3acetylpyridine, followed by a 

proconvulsant state-specific for strychnine-induced seizures myoclonus [77]. 
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New data coming from the optogenetic experimental approach must favor 

increased impulse activity. Either PC [78] or nuclei cells [60, 79] resulted in the 

suppression manifestations of temporal lobe epilepsy induced with 

intrahippocampal kainic acid administration.  

 

That is why cerebellar cells' increased impulse activity induced in SWD 

development assumes that backward cerebellar efferent influences aim to seize and 

suppress seizure discharges. However, in the case of absence electrogenesis, such a 

situation is different from the temporal epilepsy model, and backward cerebellar 

influences could maintain absences manifestations. 

 

4. CONCLUSIONS AND PERSPECTIVES 
 

Hence, the presented data favors the modulative and triggering role of the 

cerebellum in AS electrographic manifestations. The cerebellum's pro-absence 

seizure potential may at least partially contribute to cerebellar DBS's inconsistency 

in experimental conditions and patients with resistant epilepsy [36, 71, 80-82]. 

  

Some perspectives comprise parallelism between minor AS behavioral 

manifestations and functionality of the cerebellum extended beyond motor control. 

Thus, the lately established cerebellar role in cognition [83-85] corresponds to the 

well-known disruption of consciousness and disturbing informational processes in 

WAG/rij rats [5, 6, 86, 87].  

 

AS prevalently occurred at an early age (5 - 12 years), and manifestations lessened 

with the aging. A similar schedule of cerebellar neurons degeneration was 

observed in aging [88]. Such parallelism, together with discussed data on the 

functional state of cerebellum and precipitation AS manifestations, permits the 

assumption that cerebellar influences severely modulate the absence-prone CTC 

network. Such a belief is in line with the data [89], who described a default mode 
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network in patients with AS, which extended beyond the CTC network and 

included striatum and reticular pons structures. 
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