
3

Fluorosilicic acid: secondary raw material and reagent in technological practice and preparative synthesis
(a review)

ISSN 0321-4095, Voprosy khimii i khimicheskoi tekhnologii, 2023, No. 3, pp. 3-21

© V.O. Gelmboldt, 2023

                          This article is an open access article distributed under the terms and conditions of the Creative
                           Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

UDC 546.284'161-32

V.O. Gelmboldt

FLUOROSILICIC ACID: SECONDARY RAW MATERIAL AND REAGENT IN
TECHNOLOGICAL PRACTICE AND PREPARATIVE SYNTHESIS (A REVIEW)

Odessa National Medical University, Odessa, Ukraine

The present review systematizes and summarizes the results of research on utilization

processes of fluorosilicic acid solutions as large-tonnage toxic by-products of phosphate

fertilizers, phosphoric acid and elemental phosphorus production. Considering the marked

decline in the world’s fluorspar reserves, fluorosilicic acid is emerging as the main alternative

source of fluoride for the chemical industry. The main ways of H2SiF6 processing are

highlighted with obtaining of commercially demanded products: hexafluoridosilicates of

metals and ammonium, metal fluorides, anhydrous hydrogen fluoride, hydrochloric acid,

amorphous silicon dioxide, aluminosilicates and titanosilicates catalysts, and enriched

isotopes of silicon. Examples of H2SiF6 use as a main reagent for drinking water fluoridation

municipal programs, in processes of surface modification and removal of trialkylsilyl

protection in reactions of organic synthesis are also discussed. Known examples of H2SiF6

use as a raw material and reagent in industrial technologies and laboratory tests largely

conform to principles of green chemistry.
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Introduction
Fluorine and its compounds have many uses

in various fields of modern technology: from
production technologies and disposal of spent nuclear
fuel [1–3] to microelectronics [4–6] and
pharmaceutics [7–11]. At present, the main raw
source of fluorine for chemical industry is calcium
fluoride (fluorspar), with global resources estimated
at 500 million tons [12,13]. Considering the current
rates of use, the existing stocks of CaF2 will be
sufficient for further 100 years [14]. At the same
time, the resources of fluorapatite 3Ca3(PO4)2CaF2

comprise 18 billion tons according to estimates of
the United States Bureau of Mines [12]. Fluorapatite
is used as a raw material for producing phosphate
fertilizers, a large-tonnage by-product of which is
fluorosilicic acid (FSA) [12–15]. Interest towards
various aspects of FSA chemistry is connected with
its possible use as the main alternative source of
fluorine in various technological processes [12,14–
17]. The USA industry is the largest producer of
FSA, which forms during the processing of
phosphates and apatites [12], but utilizes only about

1% of it. FSA itself has rather limited uses
(fluoridation of drinking water, hardening of cement,
wood preservation) [15] and is toxic (LD50=200 mg/kg
[18]). The use of FSA as a secondary chemical raw
material is therefore economically and ecologically
attractive to obtain various commercial products.
During the last years, FSA is actively used as a reagent
and raw material in preparative reactions of organic
and inorganic synthesis [19,20], and in the production
of mesoporous silicon dioxide [16,21,22] and
aluminosilicate/titanosilicate catalysts and adsorbents
[23–25]. The present review is the first attempt to
analyze and to systemize known data, published
mainly after 2010, relating to various aspects of FSA
utilization in modern technological and laboratory
practice.

Industrial sources of fluorosilicic acid
The FSA solutions can be obtained by

interaction of silicon dioxide with diluted solutions
of HF. However, in practice, the FSA production is
integrated into technologies for processing phosphate
raw materials to obtain phosphate fertilizers,
phosphoric acid and elemental phosphorus [14,15].
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Sources of raw material for mentioned productions
are deposits of fluorapatite 3Ca3(PO4)2CaF2 and other
fluorine-containing phosphate ores [26,27].
According to data [26], fluorine content in phosphate
ores of various deposits varies within 2.0–4.9%, which
corresponds to 1.29 billion tons of fluorspar or 630
million tons of fluorine according to estimations [12].

Fluorides are involved in chemical processing
of phosphate raw materials [27] during production
of simple superphosphate, phosphoric acid by the
wet method, double superphosphate, and
nitrophosphates; all processes resulting in the
formation and emission of hydrogen fluoride and
silicon tetrafluoride (reaction product (1) of HF with
silica and silicates contained in raw material) into
the gaseous phase:

SiO2+4HFSiF4+2H2O. (1)

Reaction gases containing HF and SiF4 (with
a predominance of the latter) undergo water
absorption in scrubbers of various design with
formation of 15–25% FSA solutions [28]. A high
degree of absorption can be achieved by gas washing
with a circulating solution of FSA. Processes in such
absorptive systems are described by schemes [15]:

SiF4+2H2O4HF+SiO2, (2)

4HF+2SiF42H 2SiF6, (3)

leading to the overall reaction:

3SiF 4+2H2OH2SiF6+SiO2. (4)

The resulting solutions of commercial FSA
usually contain a certain amount of dissolved SiO2.
Concentrated FSA solutions (40–45%) can be
obtained by distillation of more diluted solutions at
room temperature and reduced pressure [15]. Overall
about 39 tons of FSA could be obtained during
processing of 1000 tons of phosphate raw material
by the wet method [12].

It should be emphasized that processing of
phosphate raw materials with formation of FSA does
not remove 100% of fluorine from the commodity
products as shown by the fluorides content of various
phosphate fertilizers (Table 1).

According to Ramteke et al. [31], heat
treatment of fertilizers at 140±50C could be a possible
option for defluoridation in the case of simple
superphosphate and diammonium phosphate. Heat
treatment eliminates 57–89% and 53–93% of
fluorides, respectively, thus reducing the risk of soil
and water contamination by fluorides as a result of
fertilizers application. However, the proposed scheme
[31] of thermal defluoridation of fertilizers is a
laboratory method which is hardly acceptable for
large-scale industrial application. In this regard,
improvement of existing technologies and
development of new ones are still relevant for
reducing fluorides levels in fertilizers produced via
processing of phosphates.

Fluoridation of drinking water
The adoption of drinking water fluoridation as

a method of caries prevention was first put into
practice in the USA during the 1940s [32]. At present,
municipal programs of drinking water fluoridation
are implemented in about 40 countries. Water
fluoridation schemes cover 100% of the population
in Singapore and Hong Kong, 80% in Columbia,
75% in Israel, 73% in Ireland and 64% in the USA.
About 400 million people are users of fluoridated
water worldwide, including more than 200 million
inhabitants of the USA [32]. Fluoridation of drinking
water accounts for 11% of the total FSA industrial
use [33]. Compared with other fluoridation agents
(Na2SiF6, NaF) [34], FSA is by far the most used
one.

The use of FSA in water fluoridation programs
is connected with the quick and quantitative
hydrolysis of SiF6

2– anion [34] according to schemes:

SiF6
2–+4H2O Si(OH)4+6F–+4H+, (5)

SiF6
2–+4H2O Si(OH)4+2F–+4HF. (6)

Sample Average concentration of fluorides, % References  
Single superphosphate, India 0.42–1.16 [29] 
Diammonium phosphate, India 0.14; 1.07 [29] 
Ammonium nitrophosphate, India 1.33 [29] 
Single superphosphate, New Zealand 1.08–1.84 [30] 
Triple superphosphate, New Zealand 1.30–2.40 [30] 
Monoammonium phosphate, New Zealand 1.60–2.20 [30] 
Diammonium phosphate, New Zealand 1.20–3.00 [30] 

 

Table  1

Fluorides content of phosphate fertilizers
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The resulting fluoride-ions manifest the
complex caries-prophylactic effect on the pathogenic
microflora of oral cavity (bacteriostatic effect,
inhibition of glycolytic enzymes), tooth enamel
(transformation of hydroxyapatite into fluorapatite,
remineralization of enamel) and dentine (occlusion
of tubule dentine by CaF2 deposition) [35]. Regardless
of the periodic criticism of drinking water fluoridation
because of toxicological effects of fluoride [36], WHO
recommends this method as a key one in the set of
measures for oral health improvement [35]. The
economic aspects of FSA use for fluoridation of
drinking water were discussed in works [37,38].

Production of hexafluoridosilicates
Hexafluoridosilicates of metals and ammonium

have various applications [28,39,40] and occupy the
first place among the products of FSA processing.
Their production uses 40% of the total volume of
utilized FSA [33].

Optimization of the processes to obtain Na2SiF6

and K2SiF6 using FSA solutions of various origins
are discussed in works [41–44]. Ruixiang [41] reacted
10–12% FSA solutions and 25% sodium chloride
solution at NaCl:FSA ratios of 1.067–0.898:

2NaCl+H2SiF6Na2SiF6+2HCl. (7)

A decrease in the ratio of NaCl:FSA and
velocity of reagents supply contributed to the increase
in yield. Na2SiF6 crystals with better filterability were
obtained at a ratio of 0.9. According to data [42],
the use of 20% FSA solution (generated as by-product
during production of phosphoric acid) in the process
(7) requires the following optimal conditions: 25%
excess of NaCl, reagents contact time of 40 min and
temperature of 400Ñ. Under these conditions, the
yield of Na2SiF6 is 94.26%. The use of NaOH as
sedimentation reagent can increase yield up to 97.3%.

Solutions forming during hydrometallurgical
processing of molybdenum concentrate were studied
in publication [43]. These solutions contained
fluorine acids H2SiF6 (0.32 mol/L), H3AlF6 (0.06
mol/L) and compounds of Fe(III) (0.046 mol/L).
When using sodium carbonate (3 mol/L) as a
precipitation reagent, almost total precipitation of
the desired product Na2SiF6 is attained at ðÍ 1.50
and 110% excess of Na2CO3. After separation of
Na2SiF6, the remaining filtrate is used for
precipitation of Na3AlF6 (synthetic cryolite) at
ðÍ>1.50 and after increasing Na2CO3 excess,
although the forming precipitate is contaminated by
Na3FeF6:

H2SiF6+Na2CO3Na2SiF6+CO2+H2O, (8)

2H3AlF6+3Na2CO32Na3AlF6+3CO2+3H2O. (9)

The purity of Na2SiF6 obtained according to
scheme (8) is 99.5% and purification of Na3AlF6

from the admixture of iron(III) fluorocomplex can
be done via extraction or fractional recrystallization.

Wang et al. [44] studied the conditions of
utilization of fluorine from FSA solution (by-product
in the production of nitrophosphate fertilizers; H2SiF6

0.78%, HF 0.10%), using the following reaction:

H2SiF6+2KNO3K2SiF6+2HNO3. (10)

Process (10) reaches completion in 1 hour at a
temperature of 250Ñ. The efficiency of fluoride
extraction is 70.22% at 400% of KNO3 excess, while
the maximal efficiency of 88.18% is achieved at 700%
excess of KNO3.

Solutions of 34% and 45% FSA were reacted
with biologically active organic bases for the synthesis
of ammonium hexafluoridosilicates (AHFS) with
composition (LH)2SiF6 (L=amino acids [45,46],
derivatives of pyridine [47–50], aniline [51],
pyrimidine [52]). These AHFS are of interest as active
pharmaceutical ingredients of potential caries-
prophylactic drugs:

H2SiF6+2L(LH)2SiF6, (11)

H2SiF6+2(LH)Cl(LH)2SiF6+2HCl. (12)

The molar ratio of reagents comprised
FSA:L=2:1, 1:1, 1:2 in the syntheses [45,46] and
3:1 in the syntheses [47-52]. The yields of AHFS
were within 76–99% [48–51]. The use of FSA
amounts in excess of stoichiometric ratio during the
synthesis increases the yield in AHFS (11), (12).
Thus, according to results of phases equilibrium study
FSA provides a desalinating action in H2SiF6–L–
H2O systems [53,54], thus lowering the solubility of
AHFS.

Production of metal fluorides and hydrogen
fluoride

Aluminium trifluoride is the most important
reactant in the process of electrolytic aluminium
production [28,55]: 28% of utilized FSA is used to
obtain AlF3 [33]. The production technology of AlF3

with the low bulk density (LBD) is based on the
direct interaction of FSA with aluminium hydroxide
(the so-called first-generation «wet-process» [56]):

H2SiF6+Al2O33H2O2AlF3+3SiO2+4H2O. (13)

Process (13) is multi-stage; it is accompanied
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by high fluoride losses and requires the use of highly
purified FSA. The reaction by-product amorphous
silicon dioxide (13) can be purified from fluorine
compounds and used as a filler of rubber mixtures
and urethane elastomers [57]. More progressive is a
«dry process» of AlF3 production of the high bulk
density (HBD) of second generation (Buss Chemtech
AG, Switzerland) [56,58], based on decomposition
of FSA under the action of concentrated sulphuric
acid with formation of anhydrous HF [59]:

H2SiF6+H 2SO4SiF4+2HF+H2SO4, (14)

SiF4+2H2OSiO2+4HF, (15)

Al2O33H 2OAl 2O3+3H2O, (16)

Al2O3+6HF2AlF3+3H2O. (17)

The «dry» technology is preferable from
ecological and economical points of view and does
not require high purity FSA. The main weakness of
this technology is a significant expense of 75% H2SO4

– 30 t per 1 t of anhydrous HF. According to
estimations performed by Dreveton [59], processing
of FSA with obtaining of AlF3 is economically more
viable compared to the use of «dry» technology only
for production of anhydrous HF.

At present, the third-generation technology for
the production of HBD AlF3 and anhydrous HF is
at the stage of industrial implementation [56]. It is
based on production and further acid decomposition
of Na2SiF6:

H2SiF6+Na2SO4Na 2SiF6+H2SO4, (18)

H2SiF6+2NaClNa2SiF6+2HCl, (19)

Na2SiF6+H 2SO4Na 2SO4+SiF4+2HF. (20)

As in a case of «dry» technology, it undergoes
stages (15)–(17). The third-generation process
favourably differs from the «dry» method by
significantly less water and sulfuric acid consumption.

Sodium fluoride and calcium difluoride belong
to the number of commercially demanded products
of FSA utilization [15,28]. They are obtained by
interaction of FSA with the corresponding
hydroxides:

8NaOH+H2SiF66NaF+Na2SiO3+5H2O, (21)

3Ca(OH)2+H2SiF63CaF2+SiO2+4H2O. (22)

According to data [60], optimal conditions for
obtaining high purity NaF (96–97%) based on 13.5%
FSA are molar ratio NaOH:H2SiF6=8.4–7.0:1,
temperature of 70–900Ñ, reaction time of 20–30
min, washing the precipitate of NaF on filter with
6–8% with NaOH or Na2ÑO3 solution at 30–500Ñ.

Previous works [61–63] present results of
optimization of fluorine extraction conditions in the
form of CaF2 from the FSA solutions, which model
fluorine-containing technological solutions [61,62]
or are real technological solutions in processes of
quartz etching by hydrogen fluoride acid [63].
According to ref. [61], the percentage conversion of
fluoride from FSA (mixture 0.90 Ì H2SiF6 and
1.28 Ì HF) into CaF2 increased from 25% to 100%
when the Ca/Si ratio in the process (26) was raised
from 1.12 to 3.91. However, the target product was
contaminated by SiO2. Treatment of the CaF2

precipitate by a solution of NaOH at temperature
45–700Ñ during 10 minutes led to a product purity
of about 90%. Publication [61] recommends a two
stage process to consistently precipitate insoluble salts
of CaF2 and Ca3(PO4)3 by neutralizing a mixture of
H2SiF6 and H3PO4 acids, using Ca(OH)2. A high
degree of separation was achieved in a narrow range
of ðÍ 3.6–3.9. In this range, the efficiency of
fluorides and phosphates extraction was 93.2–95.1%
and 8.3–9.8%, respectively. According to data [63],
the solid-phase neutralization of sewage waters of
high-purity quartz production, containing 22–24%
of FSA, by treatment with calcium oxide at
temperature 500Ñ permits to obtain the granulated
product with a content of CaF265%, which
corresponds to metallurgical grade.

Preparation of amorphous silicon dioxide
Various ways of FSA hydrolysis were proposed

to obtain mesoporous silicon dioxide – amorphous
SiO2 with the pore size 2–50 Å [64], based on the
interaction of FSA with ammonia solutions [65–
67], sodium carbonate [16] and sodium silicate
[21,22,68]. Interactions in studied systems are
described by the following general schemes:

H2SiF6+6NH 3+2H2OSiO2+6NH 4F, (23)

H2SiF6+3Na2SiO34SiO2+6NaF+H2O, (24)

H2SiF6+3Na2CO36NaF+SiO2+3CO2+H2O. (25)

Addition of surface-active substances (SAS)
(cetyltrimethylammonium bromide (CTAB) [65],
long-chain ethers of polyethylene oxide [21,22,66])
into the reactive mixtures of H2SiF6–NH4OH or
H2SiF6–Na2SiO3 allows obtaining mesoporous silica
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dioxide of regular structure with pore size 31.2 Å
[65], 4.1–4.6 Å [66], 2.5–3.1 Å [21], 2.4–3.1 Å [22]
depending on surfactant type (Fig. 1).

Obtained samples of mesoporous SiO2 can be
used as filler for rubbers [68] or catalyst carriers [22].
In particular, Park et al. [22] demonstrated that a
catalytic system obtained via impregnation of
industrial catalyst Rh(5)/Al2O3 at the surface of
mesoporous SiO2 was more efficient than an industrial
catalyst in the oxidative conversion of methane with
hydrogen production (>90% and >80%, respectively).

In search of new effective catalysts for the
synthesis of butadiene-1,3 (BD) from bioethanol and
acetaldehyde, the work [69] carried out synthesis of
Òà2Î5-containing samples of ordered mesoporous
silicon dioxide (OMS), obtained by using H2SiF6 as
a source of SiO2. The study of catalytic activity of
synthesized compounds indicates better conversion
and selectivity towards BD for the majority of Òà-
OMS catalysts compared with two commercial
Òà2Î5/SiO2 catalysts (Merck, Aldrich).

According to ref. [70], hydrothermal synthesis
in H2SiF6–Si(OC2H5)4–ÑÒÀÂ–NH4OH solutions in
the presence of ethyl acetate led to specimens of
mesoporous silica dioxide with pore size 2.5–4.0 Å,
characterized by high thermal and relative
hydrothermal stability. These specimens of
mesoporous SiO2 were used for the creation of
effectively regenerating sorbents based on iron oxide
Fe2O3 for removal of H2S from gaseous mixtures.

Elineema et al. [71] reported an almost
quantitative processing of 34% FSA into high-quality
nanoporous SiO2 according to scheme (24).
According to ref. [71], the conversion of FSA to
SiO2 following (24) leads to a product with higher
purity (99.3%) compared to the commonly used
technology based on the reaction of Na2SiO3 with

sulfuric acid (99.1%).
The pore sizes in SiO2 specimens obtained

according to reaction (24) depend on process
temperature and were 123.8 Å (250Ñ), 194.9 Å (400Ñ),
222.2 Å (600Ñ). These materials were characterized
by high thermal stability and could be used as
adsorbents, fillers for polymeric materials,
pharmaceutical supplements, cleaning and polishing
components of toothpastes.

A procedure for the use of 13% FSA according
to scheme (23) was proposed in the work [72],
including subsequent use of the reaction product
(amorphous nanodimensional SiO2) as reinforcing
material for rubber compounds (RC). Amorphous
SiO2, premodified by the action of p-
tolyltriethoxysilane and bis-(-triethoxypropyl)-
tetrasulfide, was introduced into composition of
uncured RC. The obtained composites containing
4% SiO2 had better mechanical properties and higher
thermal stability compared to the parent RC.

Zorya and Krot [73] developed the following
scheme to obtain marketable products (amorphous
SiO2 and calcium difluoride) using 6–8% FSA
solutions:

H2SiF6+3CaCO3SiO2H2O+3CaF2+3CO2. (26)

The purity of obtained CaF2 (92–95%) and
SiO2 after the procedure of additional purification
(total content of impurities 110–3%) satisfies the
requirements for raw materials used in metallurgy
and quartz glass production.

Obtaining of aluminosilicate and titanosilicate
catalysts

Aluminosilicates are a group of natural and
synthetic compounds of porous structure that are
widely used in modern technological practice and

Fig. 1. Schematics of mesoporous silica formation via cationic and nonionic surfactant templating. Reprinted from [22]

(Copyright (2019) Springer Nature, under a Creative Commons Attribution 4.0 International License)
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actively studied as heterogeneous catalysts in
petrochemical synthesis and ecological catalysis [74–
77]. The so-called zeolites (molecular sieves, ÌS)
are of particular interest. They are crystalline
aluminosilicates whose three-dimensional structure
consists in tetrahedral fragments of [SiO4]

4– and
[AlO4]

5– interlinked at the apexes into carcasses and
with a Si:Al ratio larger than 1 [74].

Apparently, Jeong et al. [65] were the first who
used FSA as a source of silicon dioxide for
hydrothermal synthesis of mesoporous MS (MMS)
by interaction in solutions H2SiF6–Al(NO3)3–
ÑÒÀÂ–NH4OH. The obtained samples of Si–Al–
MMS with pore size of 30.0–34.7 Å had high specific
surface area values (801–827 m2/g). In a series of
publications [78–80], a simple synthesis method of
MMS in mild conditions, based on hydrolysis
reaction of H2SiF6 in a NH4OH medium in the
presence of a surface active component, ÑÒÀÂ [65],
was used to obtain different Si–Al–ÌÌS with
specific surface areas of 807–820 m2/g [78], 811–
971 m2/g [79] and 981 m2/g [80]. The adsorption
and catalytic properties of these Si–Al–ÌÌS made
them effective as adsorbents of ÑÎ2 and water vapour
[78] as well as carriers of bimetallic Pt/Pd-catalysts
for naphthalene hydrogenation [79] and aromatic
component of petroleum cracking [80].

In publication [24], the proposed method of
ÌÌS synthesis [65] was modified by substituting
ÑÒÀÂ with [(C3H7)4N]Br and Al(NO3)3 with Al(OÍ)3

while maintaining the general concept of
hydrothermal synthesis. Increasing the SiO2/Al2O3

ratio and reaction time led to transformation of the
resulting crystalline phase from the orthorhombic to
monoclinic. The reaction product, zeolite ZSM-5,
demonstrates catalytic activity in transalkylation
reactions and disproportionation of toluene and 1,2,4-
trimethylbenzene. Stability of ZSM-5 catalytic
characteristics was observed in the specified reactions.

The first examples of obtaining mesoporous Ti-
containing analogues of aluminosilicates Si–Ti–ÌÌS
in reactions of hydrothermal synthesis based on FSA
were published in works [65,81]. According to data
[81], products of the interaction in solutions of
H2SiF6–Ti(OC3H7)4–ÑÒÀÂ–NH4OH are crystalline
samples of Si–Ti–ÌÌS with the pore size of 31.0–
31.4 Å and specific surface area of 882–911 m2/g. It
was noted [81] that incorporation of Ti into Si–
ÌÌS composition reduces the corresponding specific
surface area and pore volume compared to pure
silicon analogue Si–MMS. Experimental results for
the catalytic activity of synthesized Si–Ti–ÌÌS in
the oxidation reaction of 2,6-di-tertbutylphenol (2,6-
DTBP) and epoxidation of cyclohexene (CH) under

the action of Í2Î2 showed that catalytic conversion
for 2,6-DTBP and CH increases linearly with the
growth of Ti content in Si–Ti–ÌÌS structure within
the limits of 1–4 mol.%.

In publication [82], samples of Si–Ti–ÌÌS
synthesized with the use of procedure [65,81] were
studied in the reaction of oxidative desulfurization
(ODS) of dibenzothiophene (DBT) and 4,6-
dimethyldibenzothiophene (4,6-DMDBT).
According to data [82], catalytic activity of Si–Ti–ÌÌS
in reaction with 4,6-DMDBT increases with Ti
content up to a maximum at 5% w/w Ti and then
substantially decreases at 10% (w/w) Ti content.
Compared with other Ti-containing catalysts,
Si–Ti–ÌÌS manifests higher catalytic activity in
ODS reactions with participation of DBT and 4,6-
DMDBT.

According to data [23], hydrothermal synthesis
in the system H2SiF6–Ti[(OCH(CH3)2]4–ÑÒÀÂ–
NH4OH–H2O2 led to obtaining Si–Ti–ÌÑÌ-41, a
Ti-containing analog of known mesoporous material
ÌÑÌ-41 [83,84]. It was established that the product
of reaction at molar ratios Si/Ti 60 and ÑÒÀÂ/Si
0.81 and synthesis temperature 343 K had a specific
surface area of 1040 m2/g and demonstrated a high
catalytic activity in the epoxidation reaction of
cyclohexene by tret-butyl hydroperoxide (ÒÂÍÐ).

Production of hydrochloric acid
Among commercially viable products of FSA

solutions utilization can be also included hydrochloric
acid (HCl), one of the most important industrial
chemical agents [85]. In work [86], it was shown the
possibility of processing 25% industrial FSA, a by-
product of phosphoric acid production, to obtain
concentrated solutions of HCl (30–33%). At the
basis of the proposed scheme there is an exchange
reaction (7) between H2SiF6 and technical NaCl
(90%). The reaction products, 18% aqueous solution
of hydrochloric acid HCl and precipitate of sodium
hexafluoridosilicate Na2SiF6, were separated by
filtration using a membrane pump. The precipitate
was washed with water, dried at 1000Ñ and underwent
further processing resulting in 6–7% NaOH solutions
with yield of 70–80% and a mixture of calcium
fluoride and silicon dioxide, a potential raw material
for cement industry [87]. In its turn, azeotropic
distillation of the HCl solution in the presence of
sulphuric acid at an optimal volume ratio
VHCl/VH2SO4=1.33 led to the production of a 30.9%
HCl solution with the yield of about 60%.

Surface modification
It is well known that numerous technologies of

surface modification basically attempt to provide new
properties and functions to a particular material, while
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maintaining its initial bulk properties [88]. In the
modern arsenal of surface modification methods, an
important role is played by chemical treatment of
the surface and processes of liquid phase deposition
(LPD) in which FSA solutions were successfully used.

The method of deposition from the liquid phase
(LPD) in H2SiF6–H3BO3 solutions is used for coating
thin films of amorphous SiO2 on various substrata
such as glass [89], polymer material ARTON [90],
silicon plates of n-type and glass [91]. The interaction
in solutions could be described by the following
scheme:

2H2SiF6+3H3BO33BF4
–+2SiO2+3H3O

++2H2O. (27)

Process (27) is carried out under mild conditions
at temperatures of 500Ñ [89], 400Ñ [90], and 40–
600Ñ [91]. Moreover, SiO2 films are chemically stable,
possess high dielectric and mechanical characteristics
and are promising candidates as dielectric materials
in microelectronics [89,91] and reflective coatings
[90].

Whitsitt and Barron [92] have applied coatings
of SiO2 films on single-walled carbon nanotubes
(SWCNTs) using hydrolysis in a SWCNTs–H2SiF6

system at 300Ñ in the presence of SAS –
dodecyl(trimethyl ammonium) bromide (1%) and
sodium dodecyl sulfate (1%):

H2SiF6+2H2OSiO2+6HF. (28)

The film thickness was controlled by reaction
time and selected SAS. According to ref. [92], sensor
devices are a possible area of application for materials
based on SWCNTs–SiO2.

In works [93,94], the LPD process with the
use of FSA was applied for coating a SiO2 film on
silica balls, organized into a tightly packed monolayer
of hexagonally ordered particles, to obtain a
nanostructured surface. A solution of 35% FSA
enriched with silica served as reagent for the following
reactions [93]:

H2SiF6+SiO23[SiF6SiF4]
2–+2H2O+6H+, (29)

[SiF6×SiF4]
2–+2H2O[SiF4(OH)2]

2–+2HF. (30)

HF formed according to (30) causes etching
of silica spheres with reduction of their sizes. It is
expected that materials based on silica surface
modified by LPD method could be used as substrates
to influence biological systems, such as cells and
bacteria [93].

Thin films based on SiO2 are extensively used

in electronics technologies owing to their high electric
insulation properties [95]. Thus, a simple and effective
LPD method, based on hydrolysis of FSA solutions
additionally saturated by SiO2 with subsequent
annealing at 700–9000Ñ, was used for application of
SiO2 passivation films on the surface of n-type silicon
solar cells (scheme (28), 500Ñ) [96,97] and ð-type
polycrystalline silicon (scheme (27), 400Ñ) [98] of
large size (156 mm156 mm). The obtained films
showed high quality and provided 19.06% [96], 19.5%
[97] efficiency and high antireflection characteristics
[98] of solar elements of big sized silicon plates. In
review [99], a comparative analysis of various
methods of deposition of SiO2 films on silicon
surfaces of solar cells (thermal annealing, plasma-
enhanced chemical vapour deposition, ozone-based
oxidation, LPD) allowed identifying LPD method
as low-cost, simple, realized at low temperatures and
with a high rate of SiO2 precipitation.

Calcium carbonate, a material widely used as
sorbent in desulfurization processes of waste gases
[100,101] and as filler in paper production [102], is
an example of surface modification, described in work
[103]. The known disadvantages of ÑàÑÎ3 are its
low acid resistance and surface resistance, which
stimulate the development of technologies of surface
modification of calcium carbonate. The objects of
study in ref. [103] were samples of ÑàÑÎ3 with 98.7%
purity, an average particles size of 2.7 m and a
relative density of 2.69. The modifying agent was
20% FSA with molar ratios H2SiF6:ÑàÑÎ3=0.05, 0.1,
and 0.2. Interaction at the surface of ÑàÑÎ3 is
described by the following scheme:

õÑàÑÎ3(s)+H2SiF6(aq)
3CaF2(s)+SiO2(s)+(x–3)ÑàÑÎ3(s) . (31)

The reaction products (31), amorphous SiO2

and calcium fluoride, precipitated onto the entire
surface of ÑàÑÎ3 in the form of a thin film. The
results of solubility determination of ÑàÑÎ3 samples
in sulfuric acid with ðÍ 4.0 before and after surface
modification point to higher acid resistance of
modified specimens.

Separation of silicon isotopes
The natural abundances of the three stable

isotopes of silicon 28Si, 29Si and 30Si are 92.21, 4.70
and 3.09%, respectively [104]. The enriched silicon
isotopes are used in geochemistry [105], astrophysics
[106], in experiments to determine the Avogadro
constant [107].

Among methods of separation of silicon isotopes
for large-scale production (dozens of kg per year),
the most promising are the processes based on
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chemical exchange reactions and centrifugation of
gases [108]. The results from studies of chemical
exchange reaction in the «gas–liquid» system were
presented in the patent [109]:

H2
ySiF6nySiF4(l)+(1+n)xSiF4(g)

H2
xSiF6nxSiF4(l)+(1+n) ySiF4(g), (32)

in which compound with the composition
H2

ySiF6nySiF4 is a product of saturation of FSA by
silicon tetrafluoride and is a so-called high-silica
fluorosilicic acid. In process (32), an isotope exchange
occurs between the water solution containing
H2SiF6nSiF4 component (where n0) and the gas
containing SiF4. The exchange is accompanied by
enrichment of lighter isotope of 28Si in the liquid
phase and of heavier isotopes of 29Si and 30Si in the
gaseous phase.

According to data [109], the highest value of
separation factor a for 28Si, which is possible to
achieve in the system (32), is 1.021 (Table 2).

Table  2

Separation factors a of 28Si at 293 K using aqueous
saturated high-silica fluorosilicic acid solution as the raw

materials

Aqueous saturated high-silica 
fluorosilicic acid solution 

H2SiF6nSiF4 (wt.%) Free HF (wt.%) 

Separation 
factor  of 28Si 

56.14 1.53 1.021 
56.69 3.97 1.019 
56.91 6.59 1.016 

At the same time, chemical exchange in the
system in which FSA solution of azeotropic
composition (36%, 10% free HF) undergoes
distillation at 116.30C, appeared to be a more efficient
method of silicon isotope separation. The calculated
value of the separation factor a for 28Si for distillate
was 1.022. In the context of the patent discussion
[109], it should be noticed that the composition of
one of the equilibrium members (32), high-silica
fluorosilicic acid H2SiF6SiF4, obtained by saturation
of FSA of stoichiometric composition H2SiF6 by
silicon tetrafluoride, is more correctly described by
the formula Í[SiF5(H2O)]:

H2SiF6+SiF4+2H2O 2Í[SiF5(H2O)], (33)

which is confirmed by numerous spectral and
structural observations [110,111]. The same comment
applies to schemes (29) and (30) given above.

Desilylation reactions
As noted in ref. [112], FSA is one of the best

reagents to break Si–O bonds. Unlike hydrofluoric
acid, which is often used in desilylation reactions,
FSA possesses greater selectivity and can be used in
stoichiometric and even catalytic amounts under mild
conditions of synthesis. The first examples of FSA
use for deprotection of trialkylsilyl ethers in alcohols
were published in the 1990s. Pilcher et al. [113,114]
used solutions of FSA 31% in organic solvents to
break the Si–O bonds in trialkylsilyl ethers – tret-
butyldimethylsilyl (TBDMS) and triisopropylsilyl
ethers (TIPS).

As is seen from scheme (34), FSA has specific
characteristics to remove differentially the protection
of the ether TBDMS while retaining the TIPS
fragment [113]:

It was shown [114] that the solvent nature is
an important factor influencing desilylation. After a
series of experiments, the system of solvents 90:10
MeCN/t-butanol was considered optimal in terms
of selectivity ratio, reaction rate and FSA
concentration.

The effectiveness of FSA in the process of
desilylation of trimetilsililacetilenes, products of
Sonogashira reaction, was demonstrated in
publications [19,115,116] and dissertation [117]. The
desilylation process led to nonsymmetrical acetylenes
and five-membered heterocycles – 1-benzyl-4-aryl-
1H-1,2,3-triazoles, 2-(aryl)benzofurans [115], and
also exocyclic allenic cyclobutanes [116]. During the
study of the synthetic possibilities of FSA in the
Sonogashira reaction, it was stated that the amount
of FSA in the reaction system can be reduced from
1.5 to 0.5 equivalents without any negative influence
on the degree of conversion or prolongation of the
reaction time (Fig. 2).

Thus, the acid properties of FSA do not
influence its activity in the desilylation process [117].
The procedure of trialkylsilyl protection removal by
FSA action is often used at different stages of the
synthesis of natural bioactive compounds, their
derivates and metabolites – epothilone A [118],
polyanthellin A [119], calcitriol, 5-epi-hexacyclinol,
desoxohexacyclinol [120-122], and tambjamine
alkaloids [123].

(34)
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Conclusions
The present review allows identifying some

general tendencies from the results of original
publications appeared during the last 10–15 years in
various fields of FSA applied use. First, developers’
attention persists toward the improvement of multi-
tonnage processes using FSA to obtain the basic
products of fluoride technologies (aluminium
trifluoride, hydrogen fluoride, calcium difluoride,
sodium hexafluoridosilicate, sodium fluoride). The
production technology of HBD AlF3 and anhydrous
HF of third generation [58,124], developed by Buss
ChemTech AG (Switzerland), is an important
achievement in this field. This technology ensures a
high purity of target products while reducing reagents
consumption, including water, and increasing
compliance with environmental protection
requirements. According to estimations [124], the
implementation of this technology will allow to
produce more than 200,000 tons of anhydrous
hydrogen fluoride by 2023. At the same time, there
is a sharp increase of published work in the field of
relatively low-tonnage, low-energy sophisticated
technologies using FSA as a raw material. One of
the most important developments in this direction
is the synthesis of new aluminosilicates and related
metal silicate catalysts with an ordered mesoporous
structure that show high conversion and selectivity
in reactions of disproportionation, oxidation and
desulfurization of organic substrates. It has been
repeatedly emphasized [16,24,65,78,82], that the use
of industrial solutions of FSA (a toxic by-product of
phosphate fertilizers production) as a raw material
for synthesis of new catalytic agents is very promising
from the economical, ecological and social point of
view. The present review also summarized and
discussed the results of studies using FSA as a raw
material for obtaining of amorphous silicon dioxide,

hydrochloric acid, separation of silicon isotopes and
reagent for fluoridation of drinking water and removal
of trialkylsilyl protection. It is possible to predict
the emergence of new fields of FSA use, in particular
for the synthesis of pharmaceutical substances with
high anticaries and hyposensitive activity
[48,50,52,125,126]. In conclusion it is important to
remind the evident success of studies using FSA as a
raw material and reagent in various processes, whose
development could be further fostered by economic
factors [59,67,127], requirements for environmental
protection [13,17,23,29–31,67,68,70,86,128],
increase in util ization quality of products
[70,71,109,129,130], the need to minimize wastes,
consumables and solvents [56,86,87,112,131,132] as
well as energy expenditure [21,22,65–67,71,72,78–
82,89–91,96,97,113–116]. All these factors clearly
correspond to known general principles of «green
chemistry» [133] and follow the modern trends of
development of laboratory and technological practice.
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ÊÐÅÌÍ²ÉÔÒÎÐÎÂÎÄÍÅÂÀ ÊÈÑËÎÒÀ: ÂÒÎÐÈÍÍÀ
ÑÈÐÎÂÈÍÀ ÒÀ ÐÅÀÃÅÍÒ Ó ÒÅÕÍÎËÎÃ²×Í²É
ÏÐÀÊÒÈÖ² ÒÀ ÏÐÅÏÀÐÀÒÈÂÍÎÌÓ ÑÈÍÒÅÇ² (ÎÃËßÄ)

Â.Î. Ãåëüìáîëüäò

Ó äàíîìó îãëÿä³ ñèñòåìàòèçîâàíî ³ óçàãàëüíåíî ðå-
çóëüòàòè äîñë³äæåíü ïðîöåñ³â óòèë³çàö³¿ ðîç÷èí³â ôòîðî-
êðåìí³ºâî¿ êèñëîòè ÿê âåëèêîòîííàæíèõ òîêñè÷íèõ ïîá³÷íèõ
ïðîäóêò³â âèðîáíèöòâà ôîñôîðíèõ äîáðèâ, ôîñôîðíî¿ êèñ-
ëîòè òà åëåìåíòíîãî ôîñôîðó. Âðàõîâóþ÷è çíà÷íå ñêîðî-
÷åííÿ ñâ³òîâèõ çàïàñ³â ïëàâèêîâîãî øïàòó, ôòîðîêðåìí³ºâà
êèñëîòà ñòàº îñíîâíèì àëüòåðíàòèâíèì äæåðåëîì ôòîðó äëÿ
õ³ì³÷íî¿ ïðîìèñëîâîñò³. Âèñâ³òëåíî îñíîâí³ øëÿõè ïåðåðîáêè
H2SiF6 ç îäåðæàííÿì ïðîìèñëîâî çàòðåáóâàíèõ ïðîäóêò³â:
ãåêñàôòîðèäîñèë³êàò³â ìåòàë³â ³ àìîí³þ, ôòîðèä³â ìåòàë³â,
áåçâîäíîãî ôòîðèñòîãî âîäíþ, ñîëÿíî¿ êèñëîòè, àìîðôíîãî
ä³îêñèäó êðåìí³þ, àëþìîñèë³êàòíèõ ³ òèòàíîñèë³êàòíèõ êà-
òàë³çàòîð³â, çáàãà÷åíèõ ³çîòîï³â êðåìí³þ. Òàêîæ îáãîâîðþ-
þòüñÿ ïðèêëàäè âèêîðèñòàííÿ H2SiF6 ÿê ãîëîâíîãî ðåàãåíòó
äëÿ ìóí³öèïàëüíèõ ïðîãðàì ôòîðóâàííÿ ïèòíî¿ âîäè, ó ïðî-
öåñàõ ìîäèô³êàö³¿ ïîâåðõí³ òà çíÿòòÿ òðèàëê³ëñèëèëüíîãî
çàõèñòó â ðåàêö³ÿõ îðãàí³÷íîãî ñèíòåçó. Â³äîì³ ïðèêëàäè
âèêîðèñòàííÿ H2SiF6 ÿê ñèðîâèíè ³ ðåàãåíòó â ïðîìèñëîâèõ
òåõíîëîã³ÿõ ³ ëàáîðàòîðíèõ äîñë³äæåííÿõ çíà÷íîþ ì³ðîþ
â³äïîâ³äàþòü ïðèíöèïàì «çåëåíî¿ õ³ì³¿».

Êëþ÷îâ³ ñëîâà: ôîñôîðí³ äîáðèâà, ïðîìèñëîâ³ â³äõîäè,
ôòîðîêðåìí³ºâà êèñëîòà, óòèë³çàö³ÿ, âèêîðèñòàííÿ.

FLUOROSILICIC ACID: SECONDARY RAW MATERIAL
AND REAGENT IN TECHNOLOGICAL PRACTICE AND
PREPARATIVE SYNTHESIS (A REVIEW)

V.O. Gelmboldt

Odessa National Medical University, Odessa, Ukraine
* e-mail: vgelmboldt@te.net.ua

The present review systematizes and summarizes the results
of research on utilization processes of fluorosilicic acid solutions
as large-tonnage toxic by-products of phosphate fertilizers,
phosphoric acid and elemental phosphorus production.
Considering the marked decline in the world’s fluorspar reserves,
fluorosilicic acid is emerging as the main alternative source of
fluoride for the chemical industry. The main ways of H2SiF6

processing are highlighted with obtaining of commercially
demanded products: hexafluoridosilicates of metals and
ammonium, metal fluorides, anhydrous hydrogen fluoride,
hydrochloric acid, amorphous silicon dioxide, aluminosilicates
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and titanosilicates catalysts, and enriched isotopes of silicon.
Examples of H2SiF6 use as a main reagent for drinking water
fluoridation municipal programs, in processes of surface
modification and removal of trialkylsilyl protection in reactions
of organic synthesis are also discussed. Known examples of H2SiF6

use as a raw material and reagent in industrial technologies and
laboratory tests largely conform to principles of green chemistry.

Keywords: phosphate fertilizer; industrial waste; fluorosilicic
acid; utilization; application.
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