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Rapamycin and axitinib block different kinases in signaling pathways such as PI3K-Akt-mTOR and 
BDNF-TrkB, respectively. Both have antiseizure and antioxidative actions, which justify studying the com-
bined effects of these drugs upon seizures and oxidative stress in the chronic model of epilepsy. The investiga-
tion aimed to look for the combined effect of rapamycin and axitinib upon pentylenetetrazol (PTZ)-kindled 
seizures and oxidative stress. Experiments were performed on 300 two- to four-month-old Wistar male rats, 
which had been kindled daily with PTZ (35.0 mg/kg, i.p.). Malondialdehyde (MDA) level, superoxide dismutase 
(SOD) activity, and glutathione (GSH) level were determined in brain tissues of kindled rats before and after 
the treatment. The analysis of antiseizure and antioxidative actions was performed using ED50 of rapamycin 
and axitinib, with their combined administration using graded dosages of ED50 of each drug. The median 
effective dose (ED50 ) for rapamycin and axitinib was 0.93 and 4.97 mg/kg, respectively. ED50 of rapamycin 
when combined with axitinib (2.0 mg/kg) was 0.60 mg/kg, which was reduced by 35.6% when compared with 
the ED50 administered alone (P < 0.05). The MDA level increased from 152.9±24.8 to 388.3±49.2 nmol/mg of 
protein (P < 0.05), while SOD activity reduced from 11.14±2.33 to 3.54±1.08 IU/mg of protein (P < 0.05) in 
brain tissues of the kindled rats. Combined treatment with rapamycin (0.56 mg/kg, i.p.) and axitinib (2.0 mg/
kg, i.p.) resulted in a significant rise in SOD activity (11.09±1.86 IU/mg) and GSH level (7.32±1.34 µg/mg) 
when compared with the kindled rats (P < 0.05). Combined axitinib and rapamycin therapy have an antiepi-
leptic and antioxidative effect on PTZ-kindled seizures.

K e y w o r d s: seizures, pentylenetetrazol kindling, oxidative stress, axitinib, rapamycin.

Introduction

Pharmacologically resistant forms of epilepsy, 
which are observed in one–third of patients, are a 
great challenge for antiepileptic treatment [1].

The antiepileptic effect of axitinib on the pen-
tylenetetrazol (PTZ)-induced kindling rat model was 
shown earlier [2], and suppression of tyrosine kinase 
type B was identified as a new target [3]. Similarly, 
Zeng et al. [4] suggested that inhibition of the mam-
malian target of rapamycin (mTOR) with rapamycin 
suppressed kainate-induced spontaneous epilepsy. 
Further, epileptic status initiation with pilocarpine 

[5, 6] and the effect of rapamycin on seizure develop­
ment was reported [7]. Thus, mTOR pathway inhibi-
tors are recognized as prospective antiepileptic com-
pounds [8].

Oxidative stress with excessive reactive oxy-
gen species (ROS) production is regarded as both 
involved in the mechanisms of kindled brain epi-
leptisation [9-11] and a potential target for the ac-
tion of antiepileptic drugs [12]. In addition, kindled 
seizures have been shown as an appropriate model 
for antiepileptic drug studies [13]. Simultaneously, 
the spectrum of mTOR blockers have antioxidant ef-
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Abbreviations: Akt – serine/threonine-specific protein kinase; BDNF– brain derived neurotrophic factor; DMSO – di-
methyl sulfoxide; ED50 – median effective dose; GSH – reduced form of glutathione; MDA – malondialdehyde; mTOR – 
mammalian target of rapamycin; PI3K – phosphoinositide 3-kinase (PI3K); PTZ – pentylenetetrazol; ROS – reactive 
oxygen species; SOD – superoxide dismutase; Trk – tyrosine kinase; TBA – thiobarbituric acid; VEGF – vascular 
endothelial growth factor.

fects [14, 15], while for axitinib, such effects are not 
consistent [16]. 

Aim. To prove the antioxidative and antiseizure 
effects of two drugs (axitinib and rapamycin) and 
their combination in PTZ-kindled rats. 

Materials and Methods

Experimental animals. Experiments were per-
formed on 300 male Wistar rats (two to four months 
old) with the initial body weight of 180-270 g. Ani-
mals were kept in standard conditions (constant tem-
perature 23°C, relative humidity 60%, 12 h dark/
light cycles; standard diet and tap water were given 
ad libitum) and were acclimatized to laboratory con-
ditions at least seven days before the experiment. All 
experiments were carried out following the National 
Institutes of Health Guidelines for the care and use 
of laboratory animals and the European Council Di-
rective on 24 November 1986 for Care and Use of 
Laboratory Animals (86/609/EEC). The experiments 
were approved by the Odesa National Medical Uni-
versity Bioethics Committee (UBC) (approval No. 3 
dated 14/03/2016) before the study. 

Epilepsy model. Kindled seizures were in-
duced, as described previously [17]. PTZ (Sigma 
Aldrich, St. Louis, MO, USA) was given intraperito-
neally (i.p.) daily at a dose of 35.0 mg/kg for 21 days. 
The severity of seizures was evaluated accordin to 
the following criteria: 0, absence of symptoms of 
seizures; 1, facial tremor and separate myoclonic 
jerks; 2, whole-body clonic seizures; 3, clonic sei-
zures of the whole body with rearings; 4, generali
zed clonic-tonic seizures with rearings and falling; 
and 5, repeated seizures as at stage 4 or lethal out-
come as a result of seizures. Rats that demonstrated 
generalized seizures after both the 20th and 21st PTZ 
injections were taken for further observations and 
evaluation effects of compounds.

Study design and experimental group. 
According to the study design, three main protocols 
were undertaken (Fig. 1).

Kindling model creation aimed to determine 
the axitinib and rapamycin median effective dose 
(ED50), starting with 176 rats that demonstrated ful-
ly developed generalized seizures in response to the 

20th and 21st PTZ administrations (Fig. 1, protocol 
A). Saline i.p. administration was used as a control 
group. At 24 h after the last injection, all rats of the 
control group (7 rats) and eight kindled rats were 
euthanized, and their brains were collected for bio-
chemical analysis (Fig. 1, protocol A). The remaining 
kindled animals (169 rats) were randomly subdivided 
for ED50 determination of axitinib (86 rats) and ra-
pamycin (83 rats) (Fig. 1, protocol B). Each group 
was randomly subdivided into subgroups based on 
graded doses of drugs. Treatment started within 24 h 
after the last PTZ administration and was performed 
for ten days. In 24 h after the 10th administration, 
two testing trials with PTZ (35.0 mg/kg, i.p.) were 
performed for ED50 determination. The number of 
rats treated with specific doses used in each trial is 
given in protocols B and C. 

The number of rats with the absence of genera
lized seizures was taken into account as a positive 
result of the treatment and it was used of ED50, and 
its error calculation. At 24 h after the PTZ adminis-
tration, eight rats from each group treated with the 
maximal dosage of drugs were sacrificed for brain 
tissue biochemical analysis (Fig. 1, protocol B).

The combined effect of axitinib and rapamy-
cin was investigated on another group of kindled 
rats (117 animals), which demonstrated generalized 
seizures as a response to the last two kindled PTZ 
injections (Fig. 1, protocol C). Animals were ran-
domly assigned to subgroups aimed for three trials 
of rapamycin ED50 determination under conditions 
of axitinib (2.0 mg/kg, i.p.) treatment. Each group 
was treated daily with different dosages of rapamy-
cin (20, 40, 60, and 80% of its ED50 as determined 
in protocol B). Treatment started at 24 h after the 
last kindled PTZ administration and lasted ten days. 
At 24 h after the last drug administration, PTZ 
(35.0 mg/kg, i.p.) was injected, and triple ED50 of ra-
pamycin was determined. At 24 h after the moment 
of PTZ administration, eight rats treated with rapa-
mycin (0.56 mg/kg, i.p.) were sacrificed, and their 
brains were collected for biochemical analysis.

With the aim to control for the effects of the di-
methyl sulfoxide (DMSO) solvent, seven kindled rats 
were assigned additionally for ten days of DMSO ad-
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Fig. 1. Study design showing three protocols (A, B, C). ED50 – median effective dose; i.p. – intraperitoneally; 
PTZ – pentylenetetrazol

А

В
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ministration. After ten days of solvent administra-
tion and 24 h after the last PTZ injection (35.0 mg/
kg, i.p.), the induced seizure severity was estimated 
(Fig. 1, protocol C). At 24 h after the seizure test, 
brains were collected for biochemical analysis.

Biochemical investigations of oxidative stress. 
The animals were euthanized in protocols A, B, and 
C (Fig. 1) using carbon dioxide, and the brains were 
removed and maintained over dry ice until the deter-
mination of oxidative tissue damage. 

The tissue was homogenized in ice-cold (4°C) 
0.052 M sodium phosphate buffer (pH 7.0) and 
0.4 mM EDTA to produce a 10% homogenate. The 
homogenate was centrifuged at 10,000 × g at 4°C 
for 30 min, and the supernatant was separated for 
further measurements.

Lipid peroxidation was evaluated via measuring 
thiobarbituric acid (TBA) - active substances [18]. 
The spectrophotometry was performed at 530 nm. 
The extinction coefficient of 1.56×105 mol/l−1cm−1 
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was used to determine the malondialdehyde (MDA) 
level, and results were expressed as nmol/mg of pro-
tein.

The superoxide dismutase activity (SOD, 
EC 1.15.1.1) was measured using the previously de-
scribed method Kono [19]. Following this method, 
the homogenate’s supernatant was incubated with 
nitroblue tetrazolium and hydroxylamine hydro-
chloride and monitored spectrophotometrically 
at 560  nm. The percentage inhibition of the rate 
of nitroblue tetrazolium reduction to 50% of the 
maximum was then calculated as one unit of SOD 
activity. Results were expressed as IU/mg of protein.

The glutathione (GSH) level was estimated 
using the method described by Sedlak and Lindsay 
[20]. The assay used 5′5-dithiobis 2-nitrobenzoic 
acid that binds to the thiol group to give a colored 
compound detected at 412 nm. The results were ex-
pressed in µg/mg of protein.

Protein concentrations were determined by 
Lowry assay [21], using bovine serum albumin as 
the standard.

Administration of investigated compounds. 
In accordance with the study design in protocol B 
(Fig.  1), axitinib (Sigma Aldrich, St. Louis, MO, 
USA) was administered in doses of 0.5, 1.5, 4.5, 
10.0 mg/kg, i.p. and rapamycin (Pfizer, New Yourk, 
NY, USA) was administered in doses of 0.1, 0.3, 1.0, 
3.0 mg/kg, i.p. Both compounds were dissolved in 
DMSO and delivered in 0.20-0.30 ml at 60 min be-
fore PTZ administration. In protocol C, rapamycin 
was administered in dosages of 0.19, 0.37, 0.56 and 
0.75 mg/kg combined with axitinib treatment at a 
dose of 2.0 mg/kg, i.p. (Fig. 1).

Statistical analysis. The values of biochemi-
cal measurements were compared using one-way 
ANOVA and Tukey’s honestly significant difference 
(HSD) post hoc test. Data were presented as a mean 
value (M) and standard error of the mean (SEM). P 
values < 0.05 were considered significant. To avoid 
the influence of outliers, only observations falling 
between the median±3.0 standard deviations of the 
sample were included in the dataset. The Shapiro-
Wilk test for normality was used. Calculation of 
ED50 and its error was performed using  https://
www.aatbio.com/tools/ed50-calculator/. For com-
parison, the ED50 t-test for two means was used with 
a significance level (α) = 0.05. Linear regression was 
employed for dose-dependence studies. For statisti-
cal analysis, the program SPSS Statistics (IBM, New 
York, NY, USA) was used.

Results and Discussion

Behavioral characteristics of the seizures in 
kindled rats (protocol A). Seizures starting from the 
third to sixth injection and  that were progressive in 
their development. The moment of kindling comple-
tion and inclusion of animals into the experimental 
group was recognized as generalized seizures in-
duced with the two last PTZ administrations.

Effects of rapamycin and axitinib upon kindled 
seizures (protocol B). Treatment with axitinib at the 
lowest dosage (0.5 mg/kg, i.p.) prevented generali
zed seizures in one out of ten rats (10.0%), while at 
the highest dosage (10.0 mg/kg, i.p.), seven out of 11 
rats (63.6%) did not manifest generalized seizure fits. 
The calculated ED50 of axitinib was 4.97±0.37 mg 
(Fig. 2, A).

Administrations of rapamycin at the dosage 
of 0.1 mg/kg, i.p., prevented seizures in one out of 
11 rats (9.1%). A ten times larger dosage (1.0 mg/
kg) prevented seizure fits in five out of nine (55.6%), 
while the highest dosage (3.0 mg/kg, i.p.) effec-
tively protected seven out of ten (70.0%) rats from 
generalized seizures. The ED50 of rapamycin was 
0.94±0.09 mg/kg (Fig. 2, B).

Searching for combined effects of drugs (pro-
tocol C). Rapamycin treatment in a dosage of 40% 
from the ED50 (0.37 mg/kg) given under conditions of 
daily axitinib administration (40% of ED50, 2.0 mg/
kg) prevented generalized seizure fits in three out of 
nine (33.3%) rats. A two times larger dosage (80% 
of ED50, 0.75 mg/kg) effectively protected nine out of 
ten (90.0%) rats from generalized seizures.

The ED50 of rapamycin under conditions of 
combined treatment with axitinib (40% of ED50) was 
0.60±0.07 mg/kg, which was 35.6% less when com-
pared with the ED50 of solely administered rapamy-
cin (F(1.4) = 11.40, P < 0.05).

Effects of rapamycin and axitinib upon oxida-
tive stress in brain tissue. In brain tissue of kindled 
rats, the level of the oxidative stress marker MDA 
increased from 152.9±24.8 up to 388.3±49.2 nmol/
mg of protein (F(1.14) = 16.63, P < 0.01). In axitinib-
treated kindled rats, the MDA level also exceeded the 
control value by almost two times (301.5±41.8 nmol/
mg) (F(1.14) = 8.67, P < 0.02) (Fig. 3, A).

SOD activity dropped in kindled rats to 
3.54±1.08 IU/mg of protein and was significant-
ly lower when compared with the control value 
(11.14±2.33 IU/mg) (F(1.14) = 9.56, P < 0.01). In rats 
treated with axitinib and rapamycin, SOD activity 
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Fig. 2. Dose-dependent effects of axitinib and ra-
pamycin upon kindled generalized seizures. A: ef-
fects of axitinib administered in different dosages 
(abscissa, mg/kg, i.p.) (n = 42); B: effects of rapa-
mycin administered in different dosages (abscissa, 
mg/kg, i.p.) (n = 41); C: effects of rapamycin admin-
istered in different dosages (abscissa, mg/kg, i.p.) 
delivered in combination with axitinib (2.0 mg/kg, 
i.p.) (n = 39). Ordinate in panels A, B, C: percent-
age of rats prevented from generalized seizures (the 
total number of rats in a given group was defined as 
100% for that group) 

Fig. 3. Malondialdehyde (MDA) level (A), superox-
ide dismutase (SOD) activity (B), and glutathione 
(GSH) level (C) in the brain of kindled rats under 
conditions of treatment with axitinib and rapamy-
cin. Abbreviations: Abscissa: I – control (intact rats 
treated with saline – protocol A of Fig. 1) (n = 7); 
II – kindled rats (n = 8); III – kindled rats treated 
with the dimethyl sulfoxide (DMSO) solvent – pro-
tocol C of Fig. 1 (n = 8); IV – axitinib-treated kin-
dled rats (n = 8); V – rapamycin-treated kindled rats 
(n = 8); VI – combined treatment with axitinib and 
rapamycin (n = 8). Ordinates: Panel A – MDA level 
in nmol/mg of protein; Panel B – SOD activity in 
IU/mg of protein; Panel C – GSH level in µg/mg of 
protein. *P < 0.05 vs. I; #P < 0.05 vs. II (ANOVA + 
Tukey’s test) 
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(11.90±1.86 IU/mg) significantly exceeded that in the 
kindled rats (F(1.15) = 17.05, P < 0.01) (Fig. 3, B).

In kindled rats treated with rapamycin and axi-
tinib, the GSH level was 7.32±1.24 µg/mg of protein 
and significantly exceeded the value in non-treated 
kindled rats (2.29±0.75 µg/mg) (F(1.15) = 11.88, 
P < 0.01) (Fig. 3, C).

The data obtained in this study favored the 
dose-dependent effectiveness of axitinib and ra-
pamycin against PTZ-kindled generalized seizure 
fits. Also, combined administration revealed a bet-
ter effect against behavioral seizures and metabolic 
indices of oxidative stress. The increased effective-
ness was proved with the significant reduction of the 
ED50 of rapamycin when combined with axitinib and 
a significant increase of SOD activity and GSH level 
compared with the corresponding values in kindled 
rats. In addition, the reduction of MDA observed in 
rats treated with both axitinib and rapamycin was 
more pronounced than in rats with separate drug ad-
ministration.

Hence, the obtained data lead to the assumption 
that ROS production by itself represents the mecha-
nism of kindled seizure development. Such an as-
sumption is in concordance with Zhu et al. [11], who 
reported excessive MDA production and decreased 
enzymatic activities of SOD and glutathione peroxi-
dase (GSH-PX) in the hippocampus in fully PTZ-
kindled mice. Suppression of ROS production might 
also underlie or significantly contribute to the com-
bined effect of the investigated drugs’ antiseizure 
action. Such an assumption corresponds with data 
on reducing MDA, SOD, and GSH-PX caused by ra-
pamycin in the model of testicular torsion-detorsion 
injury [22]. Antioxidant effects caused by rapamy-
cin/mTOR blockade have been shown under differ-
ent pathologic conditions [23, 24].

For axitinib, a more subtle antioxidant action, 
if any, might be assumed as far as oxidative stress-
mediated genotoxic effects are recognized as the pri-
mary mechanism of antitumor activity, realized in 
concordance with the targeting of receptors of vas-
cular endothelial growth factor (VEGFR) 1–3 [25]. 

Besides VEGFR-targeted effects also include oxida-
tive DNA damage, leading to mitotic catastrophe 
and a cellular senescence program. Nevertheless, it 
was shown that the analogous inhibitor of tyrosine 
kinase B, sunitinib, might even act as an antioxidant 
by ameliorating lipid peroxidation and increasing the 
GSH level in cisplatin-treated mice [25].

Hence, considering that the expression of brain 
derived neurotrophic factor (BDNF) is linked with 
ROS production, the presence of a functional inter-
action between mTOR and BDNF-Trk [26, 27] cre-
ates the basis for the synergy of the antiseizure ac-
tion of rapamycin and axitinib. Our study findings 
suggest the combined usage of these two drugs for 
the blockade of two different kinase signaling path-
ways – PI3K-Akt-mTOR and BDNF-TrkB – to im-
prove the effectiveness of epilepsy treatment.  

Conclusions. The study data favor the role 
played by ROS production in brain tissue for the 
development of PTZ-induced kindled seizures. The 
increased effectiveness of axitinib and rapamycin 
regarding the reduction of oxidative stress manifes-
tations might contribute to their improved seizure 
control.
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Рапаміцин і акситиніб блокують різні 
кінази у PI3K-Akt-mTOR та у BDNF-TrkB сиг-
нальних шляхах відповідно. Обидва препара-
ти мають протисудомну і антиоксидантну дію, 
що обґрунтовує вивчення їх комбінованої дії на 
моделі хронічної епілепсії. Метою роботи було 
дослідити ефект комбінованої дії цих препаратів 
на пентилентетразол(PTZ)-індуковані судомні 
напади та оксидативний стрес. Дослідження про-
водили на 300 щурах-самцях лінії Wistar, яким 
щодня вводили епилептоген PTZ (35,0  мг/кг, 
в/ч). Визначали рівень малонового діальдегіду 
(MDA), активність супероксиддисмутази (SOD) 
і рівень глутатіону (GSH) в тканинах моз-
ку щурів із індукованим кіндлінгом до і після 
лікування препаратами. Аналіз протисудомної 
та антиоксидантної дії проводили за оцінкою 
середньоефективних доз (ED50) рапаміцину та 
акситинібу за їх комбінованого введення з вико-
ристанням градієнта доз ED50 для кожного пре-
парату. Встановлено, що ED50 для рапаміціна і 
акситиніба складала 0,93 і 4,97 мг/кг, відповідно. 
ED50 для рапаміціна за комбінованого засто-
сування з акситинібом (2,0 мг/кг) становила 
0,60 мг/кг, що на 35,6% нижче порівняно з ED50  
окремо введеного препарату (P < 0,05). У тка-
нинах мозку кіндлінгових щурів рівень MDA 
збільшився з 152,9 ± 24,8 до 388,3 ± 49,2 нмоль/
мг протеїну (P < 0,05), в той час як активність 
SOD знизилася з 11,14 ± 2,33 до 3,54 ± 1,08 МО/
мг протеїну (P <  0,05). Комбіноване лікування 
рапаміцином (0,56 мг/кг, в/ч) та акситинібом 
(2,0  мг/кг, в/ч) призводило до значного 
підвищення активності SOD (11,09 ± 1,86 МО/мг) 

і рівня GSH (7,32 ± 1,34 мкг/мг) порівняно з по-
казниками кіндлінгових щурів (P < 0,05). Вста-
новлено, що комбінована терапія акситинібом та 
рапаміцином має протиепілептичний і антиок-
сидантний ефект за PTZ-індукованого кіндлінгу 
в щурів. 

К л ю ч о в і  с л о в а: судоми, пентилене-
тетразол-індукований кіндлінг, оксидативний 
стрес, акситиніб, рапаміцин.
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